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Classical fault detection method has been successfully applied to practical industrial processes. However, fault
isolation is still a difficult issue yet to be solved. It is obvious because the existing fault isolation methods have
not fully used the embedded information of the concerned faults, where accuracy and reliability of fault isolation
cannot be guaranteed. For this purpose this paper presents a novel data driven fault isolation approach for non-
Gaussian processes. The proposedmethod firstly utilizes an offline learningmechanism to obtain information on
normal operating conditions togetherwith the learning on the variance and covariance of the faults. And then it is
followed by the retrieving of the fault relevant directions and the construction of detection statistics together
with the relevant confidence limit. As such, the fault identification model based on reconstruction for fault and
residual subspace is obtained which represents healthy operation status of the process. In this way an effective
data driven fault isolation algorithm is established. In addition, the proposed method has been applied to the
fault isolation for an electro-fused magnesia furnace (EFMF) and desired results have been obtained.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In order to ensure the safety of process operation and product qual-
ity, the batch process monitoring has become a key issue for investiga-
tion [1]. Especially for the system with multiple variables and strong
correlation, traditional monitoring methods are unable to achieve the
required accuracy. As such, multivariate statistical process monitoring
(MSPM) [2–4] methods have been proposed and exhibited great suc-
cess in the monitoring of industrial processes [33].

Over the past fewdecades, some effectiveMSPMmethods have been
widely used for fault diagnosis. Examples are principal component anal-
ysis (PCA) [6] and partial least squares (PLS) [7]. In this context, the con-
ventional fault diagnostic methods based on PCA extract the underlying
information from sampled data and define an acceptable operating re-
gion called confidence limit by some rules. If the monitoring indexes
move outside the confidence limit, it indicates an unusual change or a
process fault has occurred. Compared to PCA, PLS pays much attention
to the quality of the output as the fault detection is not sufficient for in-
dustrial production.When a fault is detected, it is always hoped that ef-
fective fault isolation can be realized so as to quickly find the source of
the fault. In recent years, fault isolation techniques based on PCA have
been proposed. In the multivariate statistical process monitoring area,
the method of contribution plots [4,15] has been widely used for fault
isolation under the assumption that the variables with the largest con-
tributions to the fault detection index are most likely to be the faulty
variables. However, thismethodmay result in confusing results because

of the coupling among the concerned process variables. To solve this
problem, the concept of fault reconstruction was defined in the work
of Dunia and Qin [5]. Also, reconstruction-based contribution (RBC)
[4] was developed, where the reconstruction of a fault detection index
was defined along the direction of a variable as the variables' contribu-
tion for fault diagnosis. Since most industrial processes have nonlinear
characteristics, kernel principal component analysis (KPCA) [18–22]
was proposed and widely used recently as a nonlinear extension of lin-
ear PCA [23–28]. It has been shown that KPCA can efficiently calculate
principal components in a high-dimensional feature space [29].

Considering that the operation faults are the inherent nature of
many processes and each fault exhibits significantly different underly-
ing behaviors, it is difficult to develop multiple models for the fault iso-
lation [30]. Then each model represents a specific phase and explains
the local process behaviors, which can effectively enhance process
understanding and improve monitoring reliability. MPCA models
were used to analyze the nature of a two-phase jacketed exothermic
batch chemical reactor, where monitoring results show that the
two phase-based models are more powerful than a single model [31].
Lu et al. developed a clustering-based division algorithm and phase-
based sub-PCA modeling method. The method is based on the fact
that changes of the process correlations may relate to the fault phase
shift in the batch processes. The improved PCA method is available for
the Gaussian processes. However, it performs poorly when it is applied
to industrial process datawithnon-Gaussianity [8,9]. Yu et al. developed
a particle filter based dynamic Gaussian mixture model (DGMM) [10].
More recently, independent component analysis (ICA) [11–14] was in-
troduced to solve this problem. ICA provides much meaningful statisti-
cal analysis because ICA assumes that the latent variables are not
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Gaussian distributed, which involves higher-order statistics, that is, it
reduces higher order statistical dependencies compared to PCA.
Hence, independent components (ICs) reveal more useful information
on higher-order statistics from observed data than principal compo-
nents (PCs) [16,17].

Therefore in this paper a novel data driven fault isolation algorithm
using reconstruction techniques is developed for industrial processes,
where the main contributions of this paper are listed as follows:

(1) The proposed method has eliminated the confusing results on
fault isolation seen in the existing approaches.

(2) The fault-relevant directions according to their interference degree
to the monitoring indexes are extracted so that the relationship
between normal status and fault case can be analyzed in details.

(3) The historical data of faults is used to build the fault directions.

The rest of this paper is organized as follows: The fault reconstruc-
tion and isolation method based on fault-relevant kernel independent
components are proposed in Section 2. The simulation results of the
EFMF process are presented in Section 3. Finally, the conclusion is
given in Section 4.

2. Fault reconstruction and isolation method

2.1. Extracting fault-relevant independent components

In this section, the fault-relevant kernel independent components are
described. In kernel independent component analysis (KICA), the training
data sets x1, x2, ⋯, xn ∈ RJ from the normal process and xf,1, xf,2, ⋯, xf,n ∈ RJ

from the fault space are mapped into the feature space respectively. The
data sets in feature space are recorded as Φ(X) = [Φ(x1),
Φ(x2), ⋯, Φ(xn)] andΦ(Xf) = [Φ(xf,1),Φ(xf,2), ⋯, Φ(xf,n)].

To obtain the principal components in the feature space, one needs
to solve the equation

λlγ
l ¼ 1

n
Kγl ð1Þ

where matrix K is defined as [K]i,j = 〈Φ(xi), Φ(xj)〉, and it is calculated
by Ki,j=exp(−‖xi− xj‖2/c) in this paper. λl denotes the l-th eigenvalue
of K in the feature space and γl is the corresponding eigenvector which
can be recorded as γl = [γ1

l , γ2
l , ⋯, γn

l ]T.
To satisfy the assumption that∑k = 1

n Φ(xk)= 0, the kernel matrixK
should bemean-centered before calculation byK= K−KI− IK+ IKI,
where each element of I ∈ Rn × n is equal to 1/n. The eigenvector γl

should be also normalized to satisfy ‖γl‖2 = 1/(nλl).
In the feature space, the data setsΦ(X) andΦ(Xf) are separated into

the systematic subspace and the residual subspace, respectively. Pwith
R directions span the systematic subspace ofΦ(X), and the l-th column
of P is given by pl = ∑i = 1

n γi
lΦ(xi) = Φ(X)γl. Therefore, there is P =

Φ(X)Γ, where Γ=[γ1, ⋯,γl, ⋯,γR]. Similarly, P∗with the remain R∗ direc-
tions can be recorded as P∗ = Φ(X)Γ∗. Moreover, Pf and Pf

∗ which span
the systematic subspace and the residual subspace of Φ(Xf) can also

be denoted as
P f ¼ Φ X f

� �
Γ f

P�
f ¼ Φ X f

� �
Γ�f

�
.

P can be modified as

W ¼ PD−1=2BD1=2 ð2Þ

where D = diag{λ1, λ2, ⋯, λR}. B can be calculated in the feature space
using the computation steps of the original ICA.

Let A = ΓD−1/2BD1/2, the linear operator W in the feature space
which can recover the ICs fromΦ(X) can be simplified to give:

W ¼ Φ Xð ÞΓD−1=2BD1=2 ¼ Φ Xð ÞA: ð3Þ

Similarly, there are

W� ¼ Φ Xð ÞΓ�D�−1=2B�D�1=2 ¼ Φ Xð ÞA�
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Γ fD
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A f
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f ¼ Φ X f

� �
Γ�fD

�−1=2
f B�
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f ¼ Φ X f
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A�

f

8>><
>>: : ð4Þ

2.2. Extracting the fault-relevant directions

To establish the relationship between normal status and fault case
and describe the normal range in the fault space, the normal systematic
subspaceΦT(X)WWT should be projected into the fault systematic sub-
space and residual subspace as follows

Φ̂T Xn f

� �
¼ ΦT Xð ÞWWTW fW

T
f

¼ ΦT Xð ÞΦ Xð ÞAATΦT Xð ÞΦ X f

� �
Α fA

T
fΦ

T X f

� �
¼ KAATKmA fA

T
fΦ

T X f

� � ð5Þ

Φ̂T X�
n f
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¼ ΦT Xð ÞWWTW�

fW
�T
f

¼ ΦT Xð ÞΦ Xð ÞAATΦT Xð ÞΦ X f

� �
A�

fA
�T
f ΦT X f

� �
¼ KAATKmA

�
fA

�T
f ΦT X f
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where matrix Km is defined by [Km]i,j = 〈Φ(xi), Φ(xf,j)〉.

FromEqs. (5) and (6), the kernelmatrixes ofΦ̂ Xn f
� �

andΦ̂ X�
n f

� �
can

be computed as follows:

Kn f ¼ Φ̂T Xn f

� �
Φ̂ Xn f

� �
¼ KAATKmA fA
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fK fA fA
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fK

T
mAA

TKT ð7Þ

K�
n f ¼ Φ̂T X�

n f

� �
Φ̂ X�

n f

� �
¼ KAATKmA

�
fA

�T
f K fA

�
fA

�T
f KT

mAA
TKT ð8Þ

where matrix Kf is defined by [Kf]i,j = 〈Φ(xf,i), Φ(xf,j)〉.
LetWr andWr

∗ be the linear operators that can extract the indepen-

dent components from Φ̂ Xn f
� �

and Φ̂ X�
n f

� �
respectively. Then it can be

obtained that

Wr ¼ Φ̂ Xn f
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The scores Yr and Yr
∗ can be obtained as follows:

Yr ¼ Φ̂T Xn f

� �
Wr ¼ Kn fAr

Y�
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n f
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Projecting Φ̂ X f
� �

on Wr and eΦ X f
� �

on Wr
∗ respectively, it can be

shown that
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where it has been denoted that
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