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Fisher's linear discriminant analysis and linear discriminant analysis (LDA) are powerful methods in multivariate
data analysis. Recently, a method called “uncorrelated linear discriminant analysis (ULDA)” has attracted atten-
tion in the chemometrics community. It has been stated that the major difference between ULDA and LDA is that
the discriminant vectors of ULDA must satisfy an “S-orthogonality” constraint. This has led to the impression that
ULDA is a different method from LDA. A number of papers published in the chemometrics field and others have
generally accepted this statement. However, it can be shown that the so-called ULDA method is equivalent to
Fisher's linear discriminant analysis or one simple case of LDA. There is a need to resolve the confusion surround-
ing ULDA in the chemometrics community. This work clarifies this confusion from a mathematical perspective
and demonstrates equivalence using real experimental data sets.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Discrimination and classification are important techniques of
multivariate data analysis. These methods have been widely applied to
different fields such as chemistry, metabolomics and medical science
in the past several decades. Discriminant analysis is generally employed
to separate samples (objects) from different groups (populations) in a
low-dimensional space, while classification normally involves assigning
new samples into groups with characteristics of interest. Nevertheless,
the distinction between discrimination and classification is often
unclear in solving real problems and the two terms are often used
vaguely or interchangeably. Commonly used discrimination and classi-
fication methods in chemometrics include Fisher's linear discriminant
analysis (Fisher's LDA) [1-3], linear discriminant analysis (LDA) [3,4],
partial least squares discriminant analysis (PLSDA) [5], and support
vector machines (SVM) [6].

Among the various discrimination and classification methods,
Fisher's LDA is historically one of the earliest formally developed, and
an important technique proposed by Fisher in the 1930s [1,2]. Fisher's
LDA is often used interchangeably with LDA, but subtle differences
exist. LDA was largely attributed to the efforts of Rao in the 1940s, and
assumes that the data in each group follow a multivariate normal
distribution [4]. In contrast, Fisher's LDA does not use such an explicit
assumption. For LDA, the covariance matrices for different groups can
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be different, but Fisher's LDA implicitly assumes that all the covariance
matrices are the same and a pooled covariance matrix is used. When
LDA assumes that different groups have equal population covariance
matrices, misclassification costs, and prior probabilities, this simple
case of LDA becomes equivalent to Fisher's LDA [3]. As Fisher's LDA is
equivalent to one simple case of LDA, Fisher's LDA and this equivalent
simple case of LDA will not be distinguished and are denoted as Fisher's
LDA in the remainder of this article unless clearly specified otherwise.

In the recent years, a method entitled “uncorrelated linear discrimi-
nant analysis (ULDA)” has attracted attention in the chemometrics
community. It has been stated that ULDA is a “powerful tool” and “the
major difference between ULDA and LDA is that the vectors in the
transformation matrix obtained by ULDA have to satisfy the constraint
of so-called ‘S-orthogonality’” [7]. A number of papers that have been
published in Chemometrics and Intelligent Laboratory System [8-10]
and other journals [11-14] have followed or reiterated this statement.
In particular, ULDA has been claimed to be a new method in published
references [12,14]. This has given readers, especially those without
strong background in mathematics, the impression that the results of
LDA do not have properties such as S-orthogonality, and that ULDA is a
method different from LDA. The authors of the current article posit that
this is actually not true. It can be shown mathematically that ULDA is
equivalent to Fisher's LDA (or one simple case of LDA). Obviously, a con-
fusion exists about the novelty of ULDA in the chemometrics community.
The work reported here aims to clarify this confusion with respect to
ULDA. Mathematical proof is provided and real experimental data sets
are used to demonstrate the equivalence.

In this article, a scalar is designated with an italic non-bold letter. A
vector is represented by a lower case bold letter. A row vector is always
written as the transpose of a column vector. The transpose operator is
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signified with the superscript “T”. A data matrix is denoted by an upper
case bold letter.

2. Mathematical aspect
2.1. Fisher's linear discriminant analysis
Supposing that a data matrix X contains measurements of samples

(objects) from g groups and each sample is measured on p variables,
the entire data can be arranged in matrix form:
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where the numbers of samples from different groups are denoted by Ny,
Na, ..., Ng, respectively. Note that the superscript has been used to indi-
cate the sample group information. The measurements of different var-
iables for each sample can also be denoted in a vector form, as shown in
Eq. (1). The between-group scatter matrix and the pooled within-group
scatter matrix can be calculated as
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respectively, wherex¥is the sample mean vector for the kth group, andx
denotes the overall mean vector for the entire data. Fisher's LDA looks
for a discriminant vector v that maximizes the ratio
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which is referred to as Fisher's criterion. If A;, A, -, As > 0 denote the s
non-zero eigenvalues of Sy, 'S, it is shown that the solution to v is
given as one of the corresponding eigenvectors of S, 'S,,. Specifically,
the new latent variable as a result of the original data projected on the
eigenvector corresponding to the first eigenvalue is called the first dis-
criminant, and the second new latent variable resulted from the original
data projected on the eigenvector corresponding to the second eigen-
value is termed as the second discriminant. Continuing in this way,
the jth discriminant is obtained. It should be mentioned that the

maximum number of discriminant vectors cannot be larger than the
number of groups minus one (s < g — 1), and the number of variables
(s<p)[3]

It should be mentioned that there are several variants to Fisher's cri-
terion [15,16]. One of the most important variants is to maximize
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where V is a matrix with V = [v; _1]. This generally happens
when more than two groups are involved and discriminant analysis
looks for a subspace denoted by V that maximizes Fisher's criterion in
Eq. (5). Setting the derivative matrix of F with respect to V to zero,
followed by arrangement and simplification yields

S,V=S5,V {(VTSWV) - (stbv)} A (6)

It can be seen that any basis of the subspace spanned by the g — 1
eigenvectors of Sy, 'Sy, corresponding to the g — 1 largest eigenvalues
meets this condition. Particularly, if the columns of V are chosen as
the g — 1 eigenvectors, the solution to the maximization problem in
Eq. (5) will be the same as that to Eq. (4). This is to say that if searching
for the discriminant vectors in a stepwise manner based on Eq. (4), the
solutions will be nested in the solution to Eq. (5) where a set of discrim-
inant vectors are searched simultaneously. Thus, the distinction be-
tween the problems in Egs. (4) and (5) disappears in this sense.

2.2. Uncorrelated linear discriminant analysis

The term “uncorrelated linear discriminant analysis” first appeared
in a paper in the field of face recognition [17]. In that study, Fisher's cri-
terion shown in Eq. (4) was still used (the same as Fisher's LDA), but
when searching for more than one discriminant vector, a constraint
was imposed as follows:
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where v; and v; denote any two distinct discriminant vectors and S; sig-
nifies the total scatter matrix defined as
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The constraint in Eq. (7) is the S-orthogonality and this has been re-
iterated in the references [8-14]. Based on this constraint, the latent var-
iables obtained by projecting the original data to the discriminant
vectors are uncorrelated, but the discriminant vectors are generally
not orthogonal (correlated). It should be mentioned that if the discrim-
inant vectors are forced to be orthogonal (hierarchically maximizing
Fisher's criterion), it is identical to the Foley-Sammon discriminant
transformation [18].
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2.3. Equivalence of Fisher's LDA and ULDA

At first glance, ULDA imposes an additional S-orthogonality con-
straint on Fisher's criterion and it is anticipated to produce a definition
different from that of Fisher's LDA. However, this is not true. Since the
discriminant vectors in Fisher's LDA are taken as the eigenvectors of
S« 'Sy, then for any discriminant vector v,
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