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Spectral data contain powerful information that can be used to identify unknown compounds and their chemical
structures. In this paper, we study fused lasso logistic regression (FLLR) to classify the spectral data into two
groups.We show that the FLLR has a grouping property on regression coefficients, which simultaneously selects
a group of highly correlated variables together. Both the sparsity and the grouping property of the FLLR provide
great advantages in the analysis of the spectral data. In particular, it resolves thewell-known peakmisalignment
problem of the spectral data by providing data dependent binning, and provides a better interpretable classifier
than other ‘1-regularization methods. We also analyze the gas chromatography/mass spectrometry data to clas-
sify the origin of herbal medicines, and illustrate the advantages of the FLLR over other existing ‘1-regularized
methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This paper aims to “jointly” find differently expressed peaks between
two groups and build an efficient classifier of high-dimensional spectral
data using the fused lasso logistic regression (FLLR). The high dimensional
spectral data – near infrared spectral (NIR) data, nuclear magnetic reso-
nance (NMR) data, liquid chromatography mass spectral (LC/MS) data,
and gas chromatography mass spectral (GC/MS) data – are widely used
in various biological and medical disciplines. For example, the NMR,
which observes magnetic properties from the energy absorbed and re-
emitted via atomic nucleus, is used to identify compounds in a given sam-
plemixture [1,2]. On the other hand,mass spectrometry (MS), which ion-
izes chemical compounds and measures mass-to-charge ratio of charged
particles (of ion fragments), is popular inmanybio-analytical sectors [3,4].

Despite its usefulness in various scientific fields, the analysis of spec-
tral data (or mass spectral data) comes with some difficulties. Mass
spectrometry data usually have unwanted local or global shifts of
peaks (misalignment of peaks) due to instrumental instability or small
differences in experimental conditions. The misalignment of peaks
over samples weakens the strength of major signals and introduces
loss of efficiency in statistical analyses. This requires us to align spec-
trum before analysis or to use a more complex model to explain it
[5–8]. Second, the mass spectral data are typical examples of high

dimensional and low sample size (HDLSS) data, which introduces ill-
posedness of the problem. To resolve this difficulty, many advanced sta-
tistical procedures are proposed and the ‘1-regularized regression is one
of the most popular recently [9–14].

This paper shows the fused lasso regression, a variation of the
‘1-regularized regression, can resolve the difficulties addressed above.
The classical lasso regression by Tibshirani [9] penalizes the ‘1-norm
of the coefficient vector (the sum of absolute values of coefficients) of
ordinary least square, and provides a sparse solution that estimates
many of coefficients as 0. The sparse estimate of the coefficient vector
additionally allows us to select variables of themodel, and this becomes
the most attractive feature that makes the lasso regression be widely
used in various applications. Many variations of the lasso regression
are proposed in the literature. In particular, we find several modifica-
tions of the lasso regression for strongly correlated covariates. The clas-
sical lasso regression randomly chooses one of them as non-zero, if the
model has a group of strongly correlated covariates (with non-zero co-
efficients). Unlike the classical lasso regression, the elastic-net regres-
sion by Zou and Hastie [11] has a penalty on a convex combination of
the ‘1-norm and the square of the ‘2-norm of the coefficient vector. It
has the grouping property that selects or removes strongly correlated
covariates simultaneously. The fused lasso regression of this paper, first-
ly proposed by Tibshirani et al. [12] and studied much recently [15–20],
assumes that the covariates are observed in order (for example, in time
order) andpenalizes a convex combination of the ‘1-normof differences
of adjacent coefficients and the ‘1-norm of the coefficient vector itself.
As in the elastic-net, the fused lasso regression also simultaneously

Chemometrics and Intelligent Laboratory Systems 142 (2015) 70–77

⁎ Corresponding authors.
E-mail addresses: johanlim@snu.ac.kr (J. Lim), swkwon@snu.ac.kr (S.W. Kwon).

1 Donghyeon Yu and Seul Ji Lee contributed equally to this paper.

http://dx.doi.org/10.1016/j.chemolab.2015.01.006
0169-7439/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r .com/ locate /chemolab

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2015.01.006&domain=pdf
http://dx.doi.org/10.1016/j.chemolab.2015.01.006
mailto:johanlim@snu.ac.kr
mailto:swkwon@snu.ac.kr
http://dx.doi.org/10.1016/j.chemolab.2015.01.006
http://www.sciencedirect.com/science/journal/01697439


selects a group of strongly correlated adjacent covariates, and further
makes their estimates be equal to each other.

The spectral data we study in this paper have three interesting fea-
tures. (i) the dimension of covariates is much larger than the number
of samples (high-dimensionality), (ii) many covariates are zero or
close to zero. They are simply noise and their coefficients are zero in
the model (sparsity), and (iii) covariates are observed in order, e.g., in
the order of mass-to-charge ratio or retention time in mass spectral
data. For analyzing the spectral data, the fused lasso regression has sev-
eral advantages compared to other ‘1-regularizationmethods. The spar-
sity and the grouping property of the fused lasso regression are well
fitted to the spectral data. In addition, the grouping property of the
fused lasso regression naturally provides data dependent binning of co-
variates and resolves the difficulty from misalignment of samples.

This paper is organized as follows. In Section 2, the FLLR is intro-
duced and several of its properties are studied. In particular, we show
the grouping property of the FLLR, and propose a logistic modification
of the split Bregman (SB) algorithm to solve the FLLR. Here, themain in-
terest of this paper is to find a classifier of spectral data, and we focus
our discussion on the logistic regression rather than the classical linear
regression. Section 3 analyzes the GC/MS data, where we aim to jointly
find differentially expressed peaks and classify the origin of oriental
herbal medicines. Section 4 concludes the paper with a brief discussion
of the FLLR for the two-dimensional spectral data.

2. Fused lasso logistic regression

Let p denote the number of discrete retention times (t) or mass-to-
charge ratios (m/z). Let X ∈ ℝp be the intensities of ions in a sample.
We consider two-class problem, whose classes are labeled by 0 and 1.
In our example, the class corresponds to the origin of an herbal medi-
cine; 0 (respectively, 1) indicates its origin is China (respectively,
Korea). Our goal is to build a linear classifier f(X) = Xβ = ∑j=1

p Xjβj

to predict the origin of a new sample. To be specific, if f(X)≥ 0, we clas-
sify the sample into class 1 (Y = 1); otherwise classify it into class
0 (Y = 0).

Suppose we have n (training) samples {(xi, yi), i = 1, 2, …, n}. To
build the classifier, we often minimize the empirical risk based on the
training sample as

Remp β0;βð Þ ¼ 1
n

Xn
i¼1

l yi;β0 þ xiβð Þ; ð1Þ

where yi∈ {0, 1}, xi=(xi1, xi2,…, xip) is a 1 × p covariate vector of the i-th
subject, β0 ∈ ℝ, and β = (β1, β2, …, βp)T ∈ ℝp. This paper studies the
logistic loss that is

l yi;β0 þ xiβð Þ ¼ −yi β0 þ xiβð Þ þ log 1þ exp β0 þ xiβð Þf g: ð2Þ

The spectral data is of HDLSS. The sparse regression using the
‘1-regularization is one of the most popular tool for the HDLSS data.
The FLLR, which is a main theme of this paper, proposes to minimize

Xn
i¼1

−yi β0 þ xiβð Þ þ log 1þ exp β0 þ xiβð Þf g½ � þ λΩ βð Þ; ð3Þ

where

Ω βð Þ ¼ α βk k1 þ 1−αð Þ Dβk k1 ð4Þ

with

D ¼

−1 1 0 ⋯ 0 0 0
0 −1 1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ −1 1 0
0 0 0 ⋯ 0 −1 1

0
BBBB@

1
CCCCA: ð5Þ

In the above, λ N 0 and α ∈ (0, 1) are tuning parameters to decide
the magnitudes of the shrinkage and fusion of the estimates of β,
respectively.

The FLLR has the grouping property for a set of highly correlated var-
iables as claimed in Theorem 1, which is an analogy of Theorem 1 in
Bondell and Reich [14]. Theorem 1 shows that the estimates of coeffi-
cients of any two highly correlated adjacent variables become one of
the following two cases. They are equal to each other, and are simulta-
neously selected or removed from the model. If not, their estimates
simply bridge the monotone trend of their neighboring coefficients.
Let y = (y1, y2, …, yn)T and

X ¼
x1
x2
⋮
xn

0
BB@

1
CCA ¼ x1;x2; ⋯; xp

� �
¼

x11 x21 ⋯ xp1
x12 x22 ⋯ xp2
⋮ ⋮ ⋱ ⋮
x1n x2n ⋯ xpn

0
BBB@

1
CCCA:

Theorem 1. Let λ and α be the two tuning parameters in the FLLR. Given
data (y, X) with a binary response y and standardized covariates
X=(x1,…, xp), letβ̂ λð Þbe the regression estimate using the tuning param-
etersλ for a fixed constantα∈ (0, 1). Assume that the predictors are signed
such that β̂ j λð Þ≥0 for all j. Let ρj = (xj)Txj + 1 be the sample correlation
between standardized covariates xj and xj + 1, for j = 2, …, p − 2. For

each j, if λN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n 1−ρ j

� �r �
1−αð Þ , then either (i) β̂ j λð Þ ¼ β̂ jþ1 λð Þ or

(ii) sign
�
β̂ jþ1 λð Þ−β̂ j λð Þ

�
¼ sign β̂ j λð Þ−β̂ j−1 λð Þ

� �
¼ sign β̂ jþ2 λð Þ−

�
β̂ jþ1 λð Þ

�
≠0.

Proof. The proof is similar to that of Theorem 1 in Bondell and Reich
[14]. The sub-differential of the fusion penalty function is:

∂ j Dβk k1
� � ¼

sgn β1−β2ð Þ if j ¼ 1;
sgn βp−βp−1

� �
if j ¼ p;

sgn β j−β j−1

� �
−sgn β jþ1−β j

� �
otherwise;

8>><
>>:

where sgn(x) = sign(x) if x ≠ 0 and sgn(x) ∈ [−1, 1] if x = 0.

Suppose that β̂ j λð Þ≠β̂ jþ1 λð Þ, then, the differentiation of (3)with re-
spect to βj becomes

− x j
� �T

y−μ β̂0 þ
X
k

xkβ̂k

 !( )
þ λα þ λ 1−αð Þ

� sign β̂ j−β̂ j−1

� �
−sign β̂ jþ1−β̂ j

� �� �
¼ 0; ð6Þ

where μ β̂0 þ∑kx
kβ̂k

� ��
¼ μ1 β̂0 þ x1β̂

� �
; μ2 β̂0 þ x2β̂
� �

; ⋯; μn β̂0þ
��

xnβ̂
��

with

μ i β̂0 þ xiβ̂
� �

¼
exp β̂0 þ

Xp
j¼1

xj
i β̂ j

n o
1þ exp β̂0 þ

Xp
j¼1

xj
i β̂ j

n o :

By differentiating (3) with respect to βj+1, we also have

− x jþ1
� �T

y−μ β̂0 þ
X
k

xkβ̂k

 !( )
þ λα þ λ 1−αð Þ

� sign β̂ jþ1−β̂ j

� �
−sign β̂ jþ2−β̂ jþ1

� �� �
¼ 0: ð7Þ

Subtracting (6) from (7) gives

− x jþ1−x j
� �T

y−μ β̂0 þ
X
k

xkβ̂k

 !( )
þ λ 1−αð Þ κ jþ1−κ j

� �
¼ 0;
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