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Control charts based on partial correlations have proved to be an effective approach to detect fine deviations on
the underlying structure of process data. The prompt detection of such faults is dependent on the proper selection
of the control chart design parameters, namely their control limits, subgroup size (off-line case) and forgetting
factor (on-line case). In this article, specific guidelines are provided to attain the desired detection power
while maintaining the intended false alarm rate. A formal relationship that relates the on-line monitoring
approach with the simpler off-line implementation is also derived. This relationship can then be used to design
on-line control charts based on insights and results obtained with the more interpretable off-line version. A
new fault diagnosis procedure is also introduced in order to take advantage of the partial correlations ability to
remove the effects of faulty variables in the data, and thus obtain higher identification accuracy and decrease
the total time invested in diagnosis activities and troubleshooting.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

When a critical fault is detected in an industrial process, the next
step regards the isolation of its root cause in order to fix it and return
to normal operation conditions as quick as possible. From the total
time elapsed since the occurrence of the abnormality, fault diagnosis
takes the highest share, especiallywhen compared to the fault detection
time. Therefore, the existence of effective and efficient fault diagnosis
and isolation methodologies is of special importance for the reduction
of the total downtime due to process upsets. For large scale systems,
a common approach adopted in practice is to implement PCA-MSPC
[1,2] to detect process upsets, and then analyze the associated contribu-
tion plots [3,4], to diagnose them once they occur. However, it is now
well-established that PCA-MSPC has a relatively low ability to detect
structural changes in the process. For instance, a variation in the eigen-
values of the process' variance–covariance matrix may pass completely
unnoticed [5] to this technique. Similarly, some incipient perturbations
on the variables causal relationships that slowly drift the in-control pro-
cess mean, may pass undetected at their early stages of development.
Therefore, a PCA-MSPC based approach is ineffective for detecting and
diagnosing structural changes, since the fault is generally not even
detected in the first place. A more detailed picture of the state of the
art is provided in the first article of this sequel [6].

On the other hand, structural changes are more easily detected by
monitoring statistics dedicated to follow the process variables' correla-
tion. These approaches are mostly based on some measurement of the

marginal variance–covariance matrix, which in turn is rather uninfor-
mative regarding the exact fault's location. In fact, the whole chain of
causally related variables might experience a change in correlation,
leading to a wide range of possible root causes and consequently to an
increase of time consuming inspections. To avoid such fault's smearing
effect, some diagnosis procedures have been developed based on trans-
fer entropy [7], time delay analysis [8] andGranger causality [9] in order
to identify the directionality of the fault's propagation path and thus
focus the analysis on a module that, with high probability, may contain
the fault root cause. Knowledge about the process causal map has also
been considered to supplement data-driven approaches for fault diag-
nosis [10,11]. Another solution encompasses the use of local measures
of association, such as partial-correlations.

Even though partial correlations do not provide information about
the variables causality direction, they are still able to discern if such
connectivity does exist and in what degree it has changed. This charac-
teristic, coupled with their easy computation, makes them suitable for
fault detection and diagnosis purposes at the structural level. On the
first article of this sequel [6], the use of partial correlations in fault defec-
tion was proposed and tested for the case of on-line monitoring
and proved to lead to monitoring statistics with a consistently higher
detection performance than their current counterparts based on the
(marginal) correlation and covariance. Therefore, in this article, partial
correlations are employed to implement fault diagnosis and complete
the Fault Detection and Diagnosis (FDD) approach initiated in the first
reference. The purpose now is to robustly identify a reduced set of
variables closely related with the actual root cause. The application of
the FDD scheme based on partial correlations has thus the ability to
decrease the total downtime due to process upsets, by reducing the
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detection time and, more importantly, the time dispended in diagnosis,
which is the dominant time consuming task.

The rest of the paper is organized as follows. In the next section we
discuss several issues with practical interest regarding the design of
control charts based on partial correlations, including the rigorous
definition of the control limits. We also demonstrate a formal equiva-
lence between the EWMA forgetting factor and the size of a moving
window, and discuss its practical consequences and applications.
Then, in the following section, a fault diagnosis method based on partial
correlations is introduced. This approach is applied to two cases studies
in order to assess its validity and robustness. Finally, we discuss the
results obtained and summarize the contributions of this article, as
well as its main conclusions.

2. Practical issues on the design of control charts based on
partial correlations

In reference [6], two monitoring statistics based on partial correla-
tions are proposed. These are the RMAX statistic (for monitoring the
partial correlation coefficients) and the VnMAX statistic (for monitoring
the variables' variance). Both monitoring statistics are implemented as
successive hypothesis tests in order to verify if the variables' partial
correlation coefficients and variances remain close to their in-control
values. In order to avoid the use of multiple parallel control charts,
each of these vectors of monitored quantities is summarized through
the maximum norm (i.e., the maximum in absolute value). This is
equivalent to monitor all parameters in simultaneous and issue an
alarm if at least one of them exceeds the control limits. A key step in
this procedure is the proper normalization of the sample partial correla-
tion coefficients and sample variances so that all of them follow the
same symmetric distribution (in this case the standard normal distribu-
tion). By doing so, all monitored values have the same importance and
the resultantmonitoringprocedure has the same sensitivity to increases
and decreases in the monitored parameters. For the case of the sample
partial correlation coefficients of uncorrelated variables, this normaliza-
tion can be done based on the following expression ([12] pp. 133–134
and pp. 143–144),

wr ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−q−1

p
ð1Þ

which tends to be normally distributed with zero mean and unit vari-
ance. In Eq. (1) n stands for the number of observations used to estimate
the sample variance-covariance matrix and q is the order of the partial
correlation coefficients. Similarly, the sample variances (s2) is normal-
ized by [13],

ws ¼
s2

σ2
0

� �1=3− 1− 2
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where σ0
2 is the in-control variance, and the resulting transformed var-

iable follows a normal distribution with zero mean and unit variance.
After application of the normalization functions to the sample partial

correlation coefficients and sample variances, the monitoring statistics
can be defined as,

R0MAX ¼ max wr r0ð Þj jf g ð3Þ

R1MAX ¼ max wr r1ð Þj jf g ð4Þ

VnMAX ¼ max ws vð Þj jf g ð5Þ

where r0 is the [m(m − 1) / 2] × 1 column vector of sample cor-
relation coefficients (0th order partial correlations), r1 is the
[m(m − 1)(m − 2) / 2] × 1 column vector of 1st order sample

partial correlation coefficients and v is a (m × 1) column vector
containing the variables' sample variances of a m-dimensional
process. All these values can be computed based on the estimated
sample variance−covariance matrix (either using moving win-
dows or an EWMA recursion). The formulas are:

rxy ¼
cov x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var xð Þ var yð Þp ð6Þ

for the case of 0th order partial correlation, and,

rxy�z ¼
rxy−rxzryzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−r2xz
� �

1−r2yz
� �r ð7Þ

for the case of 1st order partial correlation.
Thismonitoring scheme assumes that variables are previously trans-

formed to be decorrelated, by the application of a proper sensitivity en-
hancing transformation (SET) that makes use of the inner network of
associations among the variables. As a result, the transformed variables
are uncorrelated by design and the detection of structural changes is
maximized under such conditions. The advantages and properties of
SET are well documented elsewhere [13] and are briefly discussed
again in the previous paper of this series [6]. Thus, the behavior of the
proposed monitoring statistics will be here assessed for the general
case of uncorrelated variables, since it is for this situation that the
proposed procedure was designed to operate and where it shows its
best performance.

The formulation of Eqs. (1) and (2) can be directly applied to any
window based procedure, namely for non-overlapping windows (off-
line) or receding horizon (overlapping) moving windows (on-line).
Since the normalization functions have the same structure and, more-
over, the same uncertainty on the estimates, both approaches have
similar detection properties. In the following subsections it will be
demonstrated that the same is also valid for variance−covariance
matrix estimates based on EWMA recursion. This will be done through
the derivation of a formal relationship between thewindow size (n) and
forgetting factor (λ) of the EWMA updating scheme. For presentation
purposes, we recall that the variance−covariance matrix can be recur-
sively updated at each new observation (xt) as [14],

St ¼ λxtx
T
t þ 1−λð ÞSt−1 ð8Þ

where 0 b λ b 1. St is positive definite matrix when t ≥ m. The advan-
tages of such relationship will be explored for the purpose of designing
on-line control charts based on insights and results from the off-line
implementation, which are easy to obtain and interpret. Furthermore,
an approach to select appropriate control limits for these monitoring
statistics will also be provided.

2.1. Equivalence between the forgetting factor and the number of
observations in a moving window approach

In the case of monitoring statistics based on non-overlapping
moving windows, the required design parameter is the number of
observations forming the window (n), from which the sample
variance−covariance matrix is calculated and subsequently the partial
correlations are obtained. This parameter affects not only the correla-
tion coefficients and variance distributions, but also the monitoring
statistics performance. The same effects are observed in the EWMA
recursion approaches for the forgetting factor λ, which is the design
parameter of this class of techniques.

The forgetting factor, λ, acts as a weighting parameter that is used to
balance the importance of recent observations regarding the older ones.
However, from its sole analysis, it is not easy to grasp which observa-
tions are more significantly contributing to the variance−covariance
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