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With the aim of understanding the flux distributions across a metabolic network, i.e.within living cells, Principal
Component Analysis (PCA) has been proposed to obtain a set of orthogonal components (pathways) capturing
most of the variance in the flux data. The problems with this method are (i) that no additional information can
be included in the model, and (ii) that orthogonality imposes a hard constraint, not always reasonably. To over-
come these drawbacks, here we propose to use a more flexible approach such as Multivariate Curve Resolution-
Alternating Least Squares (MCR-ALS) to obtain this set of biological pathways through the network. By using this
method, different constraints can be included in the model, and the same source of variability can be present in
different pathways, which is reasonable from a biological standpoint. This work follows a methodology devel-
oped for Pichia pastoris cultures grown on different carbon sources, lately presented in González-Martínez et al.
(2014). In this paper a different greymodelling approach, which aims to incorporate a priori knowledge through
constraints on themodelling algorithms, is applied to the same case of study. The results of bothmodels are com-
pared to show their strengths and weaknesses.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Systems Biology has become very popular during the last decade.
Scientists with different backgrounds are nowadays working together
in order to reach a systematic understanding of organisms. The impact
of Systems Biology in biotechnological processes is so great that the
term “industrial systems biology” is today very common within this
kind of industries [1,2]. Measurement, monitoring, modelling and con-
trol (the so-called M3C methodology) are critical for obtaining high
value-added biochemicals [3].

First principles-basedmodels ofmicrobial systems can be developed
to describe the cell behaviour and achieve a predictive understanding of
how they operate [4]. At a lower-intermediate degree of details, a cell
can be roughly described as a collection of metabolites, which are
consumed and produced dynamically by a set of biochemical reactions
occurring within the cell and also being exchanged with their environ-
ment. These systems can be represented as directed graphs, or, in fact,
directed hypergraphs, which are called metabolic networks.

Metabolic networks are used to represent an organism metabolism
and its growth [5,6]. These networks are modelled assuming that cer-
tain constraints rule at steady-state, such as environmental constraints
[7], regulatory constraints [8,9], gene expression data [10], mass

balances or reaction irreversibilities [11] (the so-called constraint-
based perspective) [12,13]. The imposed constraints define a solution
space that encloses all the possible states of the network (i.e. flux distri-
butions through the reactions).

A limitation of these type ofmodels based solely on the fundamental
information available is that other aspects will remain unknown, and
some of their underlying assumptions (e.g. specific kinetics of the reac-
tion system, unknown dynamics, values of the model parameters, ob-
jective functions) may not be valid for all the metabolic possible states
of the network [13–15]. To face this limitation, hybrid (grey) models
can be useful [16]. They combine knowledge-based models (which fit
the theoretical, well-known phenomena), and empirical models (which
fit any remaining systematic variation).

In the context of grey modelling, there are different approaches to
decompose thedata into the three types of variation (known causes, un-
known causes and residuals) [17]. In the previous work [13], a model
based on known constraints was imposed. In this way, the first
principles-based model of the yeast Pichia pastoris was combined with
experimental measurements of the external fluxes found in the litera-
ture. Defining the flux across each reaction in the network as a variable,
Principal Components Analysis [18] (PCA) was used to obtain a set of
uncorrelated components, representing groups of reactions, associated
to the relevant biological functions of the cell. However, two problems
arise when one applies PCA on metabolic networks: (i) no extra, avail-
able knowledge can be included in the model, and (ii) the components
(pathways) have to be orthogonal among them.
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In order to overcome these drawbacks, a different grey modelling
approach is presented here, based on incorporating the fundamental
knowledge through constraints on the modelling algorithms using the
Multivariate Curve Resolution (MCR) technique. This is a flexible meth-
od for multivariate modelling, being its Alternating Least Squares ver-
sion [19] (MCR-ALS) one of its most used iterative versions. MCR
focuses on describing the evolution of the experimental multicompo-
nentmeasurements through their underlying component contributions
[20],without imposinghard-to-accomplish constraints froma chemical,
physical or biological point of view, as orthogonality in the components.
Thismethodology has been applied to other different types of data, such
as spectral data [21,22], chromatographic data [23], hyperspectral data
for multivariate image analysis [24], microarray data [25] or dynamic
MRI data [26].

This paper completes the work developed for P. pastoris cultures
grown on different carbon sources [13] by using MCR-ALS to obtain
the set of biological pathways through the cell. This method permits
to include modelling constraints, both from biological and mathemati-
cal points of view, in the optimisation algorithm. Another advantage
of MCR-ALS is that, as opposed to PCA, the obtained pathways can
share a single source of variability, which is reasonable from a biological
standpoint. The paper is organised as follows. Section 2 presents the
metabolic network reconstruction of the yeast P. pastoris and the differ-
ent scenarios used in the study. Section 3 describes the grey modelling
approach, explaining briefly the common part with [13] and deeply
the new methodology proposed here. This procedure is applied to the
available data from P. pastoris in Section 4. MCR-ALS results are com-
pared to PCA ones [13] in Section 5. Finally, some conclusions on the
use of MCR-ALS method are shown in Section 6.

2. Materials

2.1. Metabolic network reconstruction

The methylotrophic yeast P. pastoris has become one of the most
widely studied microorganisms, since its development in the early
1970s, as it is reportedly one of the most useful and versatile systems
for heterologous protein expression [27].Many factors have contributed
to the increasing interest in this yeast: (i) its easy molecular genetic
manipulation, (ii) its ability to produce foreign proteins at high levels,
(iii) its capability to perform many eukaryotic post-translational modi-
fications, and (iv) its commercial availability [28].

A constraint-based model, whose correspondingmetabolic network
is shown in Fig. 1, has been used throughout this work. The model rep-
resents themost significant features of P. pastorismetabolism, including
the main catabolic pathways of the yeast, such as glycolysis, the citric
acid (TCA) cycle, glycerol and methanol oxidation and fermentative
pathways [29]. Anabolism is introduced through the pentose phosphate
pathway and a general lumped biomass equation, according to which
growth is assumed to depend exclusively on key biochemical precursors.
Branch-point metabolites, such as NADH, NADPH, AcCoA, oxaloacetate
and pyruvate, are considered in compartmentalised cytosolic and mito-
chondrial pools [30].

2.2. P. pastoris experimental data set

In this work, experimental data from several fermentation runswith
different P. pastoris strains have been taken from the literature, defining
the different scenarios considered for the subsequent statistical analysis.
The 40 scenarios under study show different uptake rates of the sub-
strates glucose, glycerol and methanol (see Fig. 2). Scenario A1 corre-
sponds to a P. pastoris culture expressing the Fab fragment of the
human anti-HIV antibody 3H6 [30]. Scenarios B1–B7 and C1–C2 corre-
spond to cultures producing a lipase from Rhizopus oryzae (ROL) [31,
32]. Scenarios D1–D10 have been taken from P. pastoris cultures ex-
pressing and secreting recombinant avidin [33]. Scenario E1 has been

obtained from a macrokinetic model for P. pastoris expressing recombi-
nant human serum albumin (HSA) [34]. Scenarios F1–F7 correspond to
cultures of a P. pastoris strain genetically modified to produce sea raven
antifreeze protein [35]. Scenarios G1–G10 have been extracted from
P. pastoris cultures producing recombinant human chymotrypsinogen B
[36]. Scenario H1 corresponds to the continuous fermentation of a
P. pastoris strain for the extracellular production of a recombinant ovine
interferon protein [37]. Finally, scenario I1 comes from the culture of a ge-
neticallymodified P. pastoris strain to produce recombinant chitinase [38].
The experimental data for all these scenarios are given in Fig. 2.

At this point, a comment regarding the so-called “batch effects” is in
order. These are defined as systematic non-biological variation between
groups of samples (or batches) caused by experimental artefacts
[39–42], which can be present when experimental data are collected.
If replicates of the same scenario are available (i.e. several experimental
runswith the same strain and sameuptake rates for each substrate), the
presence of batch effects could be removed. Otherwise, the bias intro-
duced by the non-biological nature of this kind of effects may confound
true biological differences [41], affecting the results of statistical analy-
sis. In this study, the scenarios have no replicates (see Fig. 2). Hence,
the variation observed among scenarios with the same strains will be
(at least partially) due to variations in the substrate uptake rates, and
will be of biological relevance. This fact, jointlywith the scarcity of infor-
mation about other experimentation conditions (temperature, media,
etc.), does not allow us to straightforwardly confirm actual batch effects
in data.

3. Methods

The methodology applied in this paper is detailed in Fig. 3. First, the
constraint-basedmodel of P. pastoris is combinedwith the experimental
information found in the literature. These two sources of information
are unified applying a Possibilistic consistency analysis. Then, Monte
Carlo sampling is performed to obtain a large dataset of feasible flux dis-
tributions across themetabolic network. Finally, theMCR-ALS is applied
on the dataset.

The main objective of this article is to compare the results between
the grey modelling approach presented in a previous work [13],
where Principal Component Analysis (PCA) and Missing data method
for Exploratory Data Analysis (MEDA) were applied, and the new ap-
proach presented here, which is based on MCR-ALS modelling (see
Fig. 3). Both approaches share the Monte Carlo sampling and the
Possibilistic consistency analysis, as well as their results. However,
these methods are described here for the sake of completion (see [13]
for details in these methods).

3.1. Stoichiometric modelling

To build a constraint-based model, the stoichiometric informa-
tion embedded in the metabolic network (i.e. metabolites or cofac-
tors involved in each reaction) must be arranged into an I × J
matrix S (the so-called stoichiometric matrix). The rows of this ma-
trix represent the I metabolites, the columns represent the J meta-
bolic reactions and each element (i,j) is the stoichiometric
coefficient Si,j of the ith metabolite in the jth reaction. A value of Si,
j =−1 indicates that the ith metabolite is consumed by the jth reac-
tion. In contrast, a Si,j = 1 indicates that the ith metabolite is pro-
duced by the jth reaction. Finally, a value of Si,j = 0 stands for the
ith metabolite is not involved in the jth reaction.

The stoichiometric matrix is used in combination with the flux vec-
tor v=(v1,…, vJ) and themetabolite concentration vector c=(c1,…, cI)
to represent the mass balances through the metabolic network. This
equation is expressed as:

dc
dt

¼ S �v ¼ 0 ð1Þ
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