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A new multilinear regression method, called the higher-order partial least squares based on CP (canonical
decomposition/parallel factor analysis) decomposition (HOPLS-CP), is proposed. Unlike the unfold-PLS
(i.e., MPLS) which needs to unfold tensors into matrices for modeling, HOPLS-CP maintains the tensorial repre-
sentation of data by using the tensor decomposition. Therefore, HOPLS-CP avoids the drawbacks induced by
the data unfolding operation and can summarize the multi-way interaction in the data. HOPLS-CP ensures a
maximize correlation between two tensors by projecting them into a common latent subspace and independent
loading subspaces, where the optimal latent vectors and loading vectors are obtained by performing the CP de-
composition on the cross-covariance tensor of two tensors. A generalized HOPLS-CP model is then developed
to build a regression model for uneven tensors with varying sizes on one mode. An outstanding advantage of
GHOPLS-CP is that it naturally solves the uneven data length problem with no need for data alignment,
guaranteeing a better modeling ability and the intuitive interpretability. HOPLS-CP and GHOPLS-CP are applied
for the quality prediction in a benchmark fed-batch penicillin fermentation process. Their advantages, including
well predictive ability and anti-noise capability, are illustrated by two case studies.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Batch process is playing an important role in producing low-volume
and high-value-added products, because of its high flexibility to adapt
the rapidly changing market [1,2]. At present, batch processes have
been widely used in chemical, biochemical, pharmaceutical and semi-
conductor industries, and so on [3]. The increasing market competition
has aroused the demand of consistent and high quality products for
batch processes. However, due to the lack of online measurements of
quality variables [4,5], online quality control in batch processes is diffi-
cult. This makes the quality prediction becomes a highly necessary
part of batch process operations. The main task and objective of quality
prediction are to estimate quality variables as fast and accurate as pos-
sible, and thus guide the process operation to obtain high quality
products.

Quality predictionmethods have attractedmuch attention in last de-
cades. Typically, the data-driven quality prediction method has become
a hot topic, owing to the widespread application of process automation
techniques in collecting massive process data. Unlike the conventional
first-principlemodel basedmethod [4], the data-drivenmethod directly
derives prediction model from process data with little requirement on
process mechanism and prior knowledge. This advantage makes data-
driven modeling methods be more applicable in real industrial
processes. The multi-way partial least squares (MPLS), also termed as
unfold-PLS, is one of the most popular data-driven quality prediction

methods for batch processes. Lots of extended MPLS methods have
been proposed to enhance the prediction performance [6–10]. For ex-
ample, Duchesne and MacGregor [6] proposed a pathway multi-block
PLS method by utilizing intermediate quality measurements to identify
time-specific effects of process variables on the final product quality. Lu
and Gao [7] developed a phase-based PLS method by taking the multi-
phase characteristic of batch processes into account. Yu [8] proposed a
multi-way Gaussian mixture model based adaptive kernel partial
least-squares (MGMM-AKPLS) method for the quality prediction of
nonlinear batch processes.

A common feature of MPLS-based methods is that they need to un-
fold the three-way batch data array into a matrix to build the process
model. However, the data unfolding operation may result in an
unfolded dataset with the “large variable number but small sample
size” problem. For instance, a three-way array X(10 × 10 × 100),
which has 10 batches, 10 variables and 100 time slices, is unfolded to
be amatrixX(10×1000)with 10 samples and 1000 features. If applying
PLS on X(10 × 1000), only ten samples are available to optimize the
1000-dimensional loading vectors, probably resulting in an unreliable
estimate of model parameters [11]. Meanwhile, the unfolded data ma-
trix may contain lots of information with high autocorrelation and
cross-correlation complexities. These drawbacks bring difficulty to
build a superior MPLS model. Besides, MPLS fails to offer an explicit de-
scription of the three-way interaction in the data, because it destroys
the three-way data structure by data unfolding. Specifically, MPLS
does not separately extract loading vectors on variable and time
modes of the three-way batch data but merging them together, and
thus the interaction between variables and time is not explicit.
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In recent years, the tensor data analysis based on multi-linear alge-
bra has been successfully applied in many fields, such as chemistry, sig-
nal processing, neuroscience, graph analysis, computer vision, food
industry, and so on [12,13]. Several surveys have summarized recent
developments and applications of tensor data analysis methods
[12–15]. The strength of tensor data analysismethods is that theymain-
tain the tensorial representation of data, and thus avoid those draw-
backs induced by data unfolding. Compared with MPLS, the tensor
analysis is able to summarize all information, i.e., all main effects and
all interactions together, in the tensor data. Specifically, tensor analysis
methods extract the feature on each mode of tensor data through a few
components and describe the relations between these components [16].

N-way PLS (N-PLS) [17] and higher-order partial least squares
(HOPLS) [11] are two typical multi-linear regression methods. Bro
[17] proposed N-PLS as a natural extension of the bilinear PLS [18] to
higher orders, combining canonical decomposition/parallel factor anal-
ysis (CANDECOMP/PARAFAC or CP) [12,19,20] with PLS. It decomposes
independent data and dependent data to a set of score vectors and
weight vectors simultaneously, subject to maximum pairwise covari-
ance of score vectors [11,17]. Bro [17] demonstrated some advantages
of N-PLS as compared to unfold-PLS, including robustness to noise, sta-
bilized solution, increased predictability and intuitive interpretability.
Zhao et al. [11] presented HOPLS based on the block Tucker decomposi-
tion. Owing to the better fitness ability of Tucker model over the CP
model [12,21], HOPLS has a better predictive ability than N-PLS [11].
However, the multi-fold cross-validation should be used to choose
proper tuning parameters for the HOPLS model, which brings a heavy
computational burden and is very slow for large-scale data. This can
be very annoying in practical applications. Similar to unfold-PLS, neither
HOPLS nor N-PLS can be used to modeling the data with uneven sizes,
which prevents their further applications.

Most of quality prediction methods for batch processes idealistically
assume that all batch data have the same size, ignoring the uneven-
duration nature of many batch processes. In fact, the duration of a real
batch process is usually not fixed due to unavoidable disturbances and
changes of operating conditions, resulting in uneven-length batch data.
In such case, different types of trajectory synchronization methods can
be adopted to handle the uneven-length problem, such as simply cutting
all batch data to theminimum length [22], dynamic timewarping (DTW)
[23] and correlation optimizationwarping (COW) [24]. However, the tra-
jectory synchronization operation alters the original data record, which
may distort the underlying correlation information of data and reduce
the prediction ability. Besides, the physical meaning of time scale may
be lost after trajectory synchronization, which reduces the interpretabil-
ity of models. Therefore, an effective method should be developed to
solve the uneven-length problem without aligning batch trajectories.

In this paper, a new multi-linear regression method, called the
higher-order partial least squares based on CP decomposition (HOPLS-
CP), is proposed to predict the tensor Y from a tensor X. Similar to
other tensor analysis methods, HOPLS-CP is able to directly modeling
tensor data without using data unfolding. HOPLS-CP aims to simulta-
neously decompose tensors X and Y into a set of vectors, termed as la-
tent vectors and loading vectors, and ensures that the latent vectors
from X and Y have maximum pairwise covariance. To achieve this
goal, HOPLS-CP performs CP decomposition on the cross-covariance
tensor of X and Y to optimize all loading vectors, and then obtain latent
vectors by simple tensor operations. A generalized HOPLS-CP (GHOPLS-
CP) method is also developed to build a regression model for uneven
tensors with varying sizes on one mode. In the GHOPLS-CP model, the
loading vector on the mode with varying sizes is allowed to vary with
data sizes, while those loading vectors on other modes are invariable
like the HOPLS-CP model. By this way, GHOPLS-CP naturally solves the
uneven-length problem with no need for data alignment. HOPLS-CP
and GHOPLS-CP are tested in a fed-batch penicillin fermentation pro-
cess for quality prediction. The results indicate that they have well pre-
dictive ability and anti-noise capability.

2. Notation and preliminaries

Tensors (multi-way arrays) are denoted by underlined boldface cap-
ital letters, e.g., X. The order of a tensor is the number of dimensions,
namelyways ormodes.Matrices are denoted by boldface capital letters,
e.g., X. Particularly, the identity matrix is denoted by I. Vectors are de-
noted by boldface lowercase letters, e.g., x. The ith entry of a vector x
is denoted by xi. The ith column of a matrix X is denoted by xi and the
element (i, j) is denoted by xij. The element (i1, i2, …, iN) of an Nth-
order tensor X ∈ℝI1�I2�⋯�IN is denoted by xi1 i2⋯iN . The nth factor vector
and matrix in a sequence is denoted by x(n) and X(n), respectively. X(n)

denotes the mode-n matricization of a tensor X [12].
The norm of an Nth-order tensor X ∈ℝI1�I2�⋯�IN is defined as

Xk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI1
i1¼1

XI2
i2¼1

⋯
XIN
iN¼1

x2i1i2⋯iN :

vuut

The n-mode product of a tensor X ∈ℝI1�⋯�In�⋯�IN with a matrix
A∈ℝ J�In is denoted by Y¼X�nA∈ℝI1�⋯�In−1� J�Inþ1�⋯�IN with [12,25]

yi1⋯in−1 jinþ1⋯iN ¼
XIn
in¼1

xi1⋯in⋯iN a jin
:

The n-mode product of a tensorX ∈ℝI1�⋯�In�⋯�IN with a vectort∈ℝIn

is denoted by Y¼X�n t∈ℝI1�⋯�In−1�Inþ1�⋯�IN with

yi1⋯in−1 inþ1⋯iN ¼
XIn
in¼1

xi1⋯in⋯iN tin :

The inner product of two same-sized tensors X ;Y ∈ℝI1�⋯�In�⋯�IN is
defined as

X ;Yh i ¼
XI1
i1¼1

XI2
i2¼1

⋯
XIN
iN¼1

xi1 i2⋯iN yi1i2⋯iN

For an Nth-order tensor X ∈ℝI1�⋯�In�⋯�IN and an Mth-order
tensor Y ∈ℝ J1�⋯�In�⋯� JM with the same size on the nth-mode,
their n-mode cross-covariance is denoted by Z¼ X ;Yh i n;nf g∈
ℝI1�⋯�In−1�Inþ1�⋯�IN� J1�⋯� Jn−1� Jnþ1�⋯� JM with

zi1⋯in−1 inþ1⋯iN j1⋯ jn−1 jnþ1⋯ jM ¼
XIn
in¼1

xi1⋯in⋯iN y j1⋯in⋯ jM :

The Tucker decomposition of an Nth-order tensor X ∈ℝI1�⋯�In�⋯�IN

can be concisely expressed by the Tucker operator as [12,25]

X ≈ G�1A
1ð Þ�2⋯�NA

Nð Þ ≡ wG;A 1ð Þ
;…;A Nð Þj

where G ∈ℝ J1�⋯� Jn�⋯� JN is called the core tensor, and A nð Þ ∈ℝ Jn�In are
factor matrices. Likewise, the CP decomposition of an Nth-order tensor

X ∈ℝI1�⋯�In�⋯�IN can be concisely expressed by the Kruskal operator
as [12,25,26]

X ≈
XR
r¼1

a 1ð Þ
r ∘a 2ð Þ

r ∘⋯∘a Nð Þ
r ≡ wA 1ð Þ

;…;A Nð Þj

where the symbol “∘” denotes the vector outer product, anda nð Þ
r ∈ℝIn is

the rth-column vector of matrix A(N). The Kruskal operator is actually a
special case of the Tucker operator where the core tensor is an unit
tensor [12,25], i.e.,

wA 1ð Þ
;…;A Nð Þj ¼ w J ;A 1ð Þ

;…;A Nð Þj
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