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This work presents a new method for adaptive soft sensor development by further exploiting just-in-time
modeling framework. In the presented method, referred to as online local learning based adaptive soft sensor
(OLLASS), the samples used for local modeling are selected based on the mutual information (MI) weighted or
neighbor sample based similarity measure. Then, two adaptive methods, namely self-validation and neighbor-
validation, are developed to adaptively select the optimal local modeling size for scenarios without and with
the neighbor output information, respectively. Further, a real-time performance improvement strategy is used
to enhance the online modeling efficiency. Moreover, an online dual updating strategy is proposed to activate
infrequent local model updating and model output offset updating in turn, which allows significantly reducing
the online computational load by avoiding unnecessary local model reconstructionwhile at the same timemain-
taining high estimation accuracy by performing offset compensation. A maximal similarity replacement rule
using MI weighted similarity measure is used for database updating. The superiority of the proposed OLLASS
method over traditional soft sensors in terms of the estimation accuracy, adaptive capability and real-time
performance is demonstrated through an industrial fed-batch chlortetracycline fermentation process.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The lack of reliable online sensors, which can measure the critical
process variables that are usually obtained by offline laboratory
analysis, poses great challenges for implementing advanced control,
efficient monitoring and optimization of industrial processes. In recent
years, soft sensor techniques have gained increasing popularity in
process industry and aim to provide online estimates of difficult-to-
measure variables in a real-time fashion [1–5]. Instead of using hardware
instruments, soft sensingmethod relies upon an inferential model to pre-
dict the target variable by using other highly correlated but easy-to-
measure variables as model inputs.

In general, one can distinguish two types of soft sensors, namely
model-driven and data-driven [2]. Though modeling soft sensors from
first principles are desirable, inmost cases it is impossible to develop ac-
curatemechanistic models due to the unavailability of in-depth process
knowledge as well as the heavy workload involved, especially for com-
plex processes. Furthermore, the mechanistic models are usually built
under the ideal operating conditions, whereas the actual process char-
acteristics may be significantly different. Alternatively, data-driven
soft sensors have become increasingly popular in industrial applications
as minimal process knowledge is needed while the plant historians

provide abundant operation data for empirical model development
[2,4,6,7]. Modern measurement techniques enable large amounts of
plant data to be collected, stored and analyzed, thereby rendering
data-driven modeling more attractive than model-driven methods for
soft sensor development.

The most common data-driven modeling techniques for soft sensor
design aremultivariate statistical methods such as principle component
regression (PCR) [8–10], partial least squares (PLS) [11,12], independent
component analysis (ICA) [13,14], and their nonlinear variants such as
kernel PLS (KPLS) [15–18] and kernel PCR (KPCR) [18,19]. Methods of
this type usually identify models within the lower-dimensional sub-
space projected from the original input data. They gained popularity
due to their statistical background, ease of interpretability as well as
their strong capability of dealing with data colinearity. Meanwhile, the
machine leaning methods have been widely accepted as useful tech-
niques for soft sensor design such as artificial neural networks (ANN)
[20,21], support vector regression (SVR) [22,23], neuro-fuzzy systems
[24], Gaussian process regression (GPR) [25,26] and Gaussian mixture
regression [27]. Various data-driven soft sensor modeling methods
and their applications were reviewed by Kadlec et al. [2].

Traditionally, a soft sensor usually relies upon a global regression
model and aims to achieve universal generalization performance. How-
ever, global methods may lead to inaccurate estimations in some local
regionswhere process characteristics change.Meanwhile,when dealing
with large datasets, global approaches become less competitive because
of the difficulties in determining model structure and the complexity
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associatedwith the optimization problem. Another fundamental limita-
tion of global methods lies in the difficulty of updating model online
when the process dynamics have moved away from the nominal oper-
ating space. To overcome these shortcomings, various local learning
methods have been developed, mainly including multi-model methods
and ensemble learning. In multi-model modeling, process data are di-
vided into different sub-domains and local models are constructed
over every domain [16,28,29]. Then, the target variable is predicted by
using a deterministic local model representing the identical operation
phase or mode. The commonly used techniques for achieving phase or
mode identification are clustering methods such as k-means algo-
rithm [30] and Gaussian mixture model [31]. In contrast to multi-
model strategy, ensemble learning requires building a set of local
models and then provides the final prediction by combing all available
local model outputs [32]. The way in which the global data is split
into the local partitions depends upon the algorithm. Typical ap-
proaches for this purpose include clustering algorithms [31,33], bagging
[13,26,34], boosting [35], etc. To obtain the ensemble prediction, the
predictions of local models have to be combined by using simple
averaging, Bayesian inference strategy [9,26,32,33,36], or regression
coefficient weighting [13,34], etc. Though multi-model and ensemble
strategies can provide more robust and reliable predictions than global
models, such methods often suffer from the drawback of requiring a
priori knowledge to decide the partition of operation data. In practice,
the quantitative and precise information of data divisions is often un-
available. Evenworse, such offline local learning methods are essential-
ly nonadaptive since the historical data partitions remain unchanged
once deployed into real-life operation, which may lead to performance
deterioration when new process states take place.

Apart from the model structure, another crucial issue concerning
soft sensor application is the model maintenance. Even if a highly accu-
rate soft sensor is developed, its estimation performance will deterio-
rate due to changes in the state of plants and process characteristics,
such as set-point changes, catalyst deactivation, seasonal effects, vari-
ances of raw materials, and equipment aging [37,38]. This is because
the built model usually represents only the process states observed
during the training phase, whereas the current process dynamics may
be significantly different. In fact, a recent questionnaire survey revealed
that the most important problem of current soft sensors was how to
cope with changes in process characteristics and maintain high estima-
tion accuracy for a long period of time, i.e. model maintenance [39].
Thus, from the practical viewpoint, soft sensor should be appropriately
updated using the newest data to avoid performance degradation.

To cope with changes in process characteristics and automatically
update soft sensors, various adaptation mechanisms have been devel-
oped, such as recursive adaptation methods [37,40], moving window
(MW) techniques [37,41–48], time difference (TD) modeling [49], and
offset compensation [41–45]. Recursive methods can adapt models to
new operating conditions recursively. However, when a process is oper-
ated within a narrow range, the model may adapt excessively and thus
result in blind updating. Another issue is that they cannot cope with
abrupt changes. Additional challenging issue for recursive methods is
related to the selection of an appropriate forgetting factor. Moving win-
dow methods have also been developed to update predictive models
using a set of data points that are measured most recently. Similar to
the selection of parameters like forgetting factor, it is also difficult to se-
lect the optimal size of adaptationwindow (window size) and the adap-
tation intervals between the updates (step size). Another adaptation
method is the time difference modeling, which was proposed by con-
structing models based on the time difference of a target variable and
that of input variables [49]. Though TD models can effectively handle
the effects of deterioration with age, such as drift and gradual changes
in the state of plant, it cannot account for complex process changes
but those changes progressing at a constant rate. Moreover, the estima-
tion accuracy of soft sensors can be improved by performing offset com-
pensation [41–45]. In addition, an adaptive soft sensor with online

Bayesian model updating strategy was proposed [50]. The basic idea of
this approach is that the nominal nonlinear state space model is first
identified through expectation–maximization algorithm and online
prediction of difficult-to-measure variable is achieved by adaptive syn-
thesis of data from various hardware sensors and model predictions
through sequential Bayesian filtering. The adaptive capability of the
resulting soft sensor is attributed to the Bayesian model calibration
scheme and particle filter, which are applied to simultaneously update
the process state and the calibration parameters using multirate mea-
surements from online-analyzer and lab data. However, such time-
series models using dynamic model structure may be not well suited
for online real-time quality and state prediction in practice due to
their limited capability of handlingmissing values and inadequate sam-
pling intervals. To further improve the performance of adaptive soft
sensors, adaptation methods are often combined with local learning.
Examples of combination of recursive methods and local learning can
be found in [43,51,52] while the examples integrating MW methods
with local leaning can be found in [53,54]. An ensemble of TD soft sensor
has also been reported in [55].

Meanwhile, just-in-time (JIT) modeling was proposed to cope with
changes in process characteristics as well as nonlinearity, and it has
been widely used for nonlinear process monitoring and soft sensing
[5,15,56–63]. The general idea of JIT modeling is to build a local model
from past data around the query point only when the estimation for
the query data is required, and then the local model is discarded after
estimation. The superiority of JIT modeling over conventional methods
is due to its particular online local learning framework. Since only sam-
ples similar to current state are selected for local model construction, JIT
modeling can cope with abrupt changes as well gradual ones in process
characteristics. It can also efficiently deal with process nonlinearity by
repeatedly building local models. Traditionally, nonlinear methods
such as ANN and SVM are employed to handle process nonlinearity.
Themethods such as PLS and PCA,which are essentially linearmodeling
techniques, cannot address process nonlinearity unless certain nonline-
ar variations such as kernel and spine functions are integrated [64–66].
In contrast, JIT learning or locally weighted method such as locally
weighted PLS allows capturing nonlinear characteristics and achieving
high model performance based on local learning even though simple
linear techniques such as PCR and PLS are used. Another advantage of
JITmethod is that it can avoid the problems of region division and inter-
polation between local models, which are often encountered in offline
local learning. Additional advantage of JIT modeling is its inherently
adaptive nature, which is obtained by simply adding the new data into
the database. Therefore, JIT method has become a promising technique
for adaptive soft sensor development and has been successfully applied
to industrial processes [3,5,61].

Over the last decade, research works concerning JIT modeling have
mainly focused on the definition of similarity measure and the selection
of regression function to enhance the estimation accuracy. To construct
highly accurate JIT soft sensors, it is crucial to define the similarity mea-
sure. So far, various similarity measures have been proposed, such as
Euclidean distance [5,67], the angle [58,59], the correlation among var-
iables [63,68–70], the weighted Euclidean distance (WED) [15,67,72],
and the adaptiveWED [73]measures. On the other hand, the estimation
accuracy of JIT models can be further improved by selecting suitable re-
gression function. Apart from themost frequently used linear modeling
techniques such as PCR and PLSmethods, some attempts have also been
paid to nonlinear techniques such as KPLS [15], KPCR [19], SVR [74],
least squares SVR (LSSVR) [67], and weighted LSSVR [75]. While some
success have been reported based upon the use of JIT modeling, there
remain some problems that have yet to be overcome for the introduc-
tion of JIT soft sensors into practice.

First of all, the definition of similarity measure should be further
explored. For example, WED similarity measure performs better than
the commonly unweighted one since different importance is assigned
to input variables according to their relevance to the output variable.

59H. Jin et al. / Chemometrics and Intelligent Laboratory Systems 143 (2015) 58–78



Download English Version:

https://daneshyari.com/en/article/1180564

Download Persian Version:

https://daneshyari.com/article/1180564

Daneshyari.com

https://daneshyari.com/en/article/1180564
https://daneshyari.com/article/1180564
https://daneshyari.com

