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The penalized signal regression (PSR) approach to multivariate calibration (MVC) assumes a smooth vector of
coefficients for weighting a signal or spectrum to predict the unknown concentration of a chemical component.
P-splines (i.e. B-splines and roughness penalties, based on differences) are used to estimate the coefficients. In
this paper we allow the PSR coefficient vector to vary smoothly along a covariate (e.g. temperature), which
results in a smooth surface on the wavelength–temperature domain. Estimation is performed using two-
dimensional tensor product P-splines. As such, a slice of this surface effectively estimates the vector of coefficients
at any arbitrary temperature. As an added generalization, we further relax the implicit assumption of an identity
link function by allowing an unknown, but explicit, link function between the linear predictor and the response.
Again, we allow the signal's link function to vary smoothly along a covariate, which produces a two-dimensional
link surface. The unknown link surface is also estimated using two-dimensional P-splines, which is sliced at the
same arbitrary temperature to bend prediction. Typically we use a common covariate (e.g. temperature) to
vary the associated link function, as with the signal coefficients, but nothing prohibits the use of two different
ones.We termourmethod: varying single-index signal regression (VSISR). Themethods presented are grounded
in penalized regression, where difference penalties are placed on the rows and columns of the tensor product
coefficients. Each row and column of each surface has its own tuning parameter. An application to ternary
mixture data illustrates that both the varying-coefficient and varying-nonlinearity (due to the link) are present.
External prediction performance comparisons are made for both the identity link varying-coefficient penalized
signal regression (VPSR) and partial least squares (PLS).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we take yet another approach to the multivariate
calibration problem, in particular where the signal (spectra) regressors
appear to have two-dimensional structure. Although we generally use
the term signal throughout the paper, our application considers NIR
spectra (taken over several temperatures). Through simultaneous
estimation, we identify and estimate two separate modeling compo-
nents, both of which are surfaces: (a) a single smooth regression
coefficient vector, which effectively ensembles a smooth surface while
varying along the temperature covariate [1], and (b) an unknown and
nonlinear link function, which also varies along the temperature covar-
iate, yielding a link surface and thus extends the work of Eilers, Li and
Marx [2] and [3]. Although the first component is linear, the second
component explicitly models the nonlinearity, allowing us to learn
something about features of the transformed mean, which in some
cases enhances insight into the process.We choose to use a common co-
variate (e.g. temperature) to vary the associated link function, as with
the signal coefficients, but the interacting covariate could differ. We
will see that the combination of these components can lead to a

systematic and tractablemodeling approach, that is statistical in nature,
while in some cases having improved external prediction performance
when compared to identity link model variants and partial least
squares.

2. Motivating example

We revisit data used in [3], with permission from ZhenyuWang and
Age Smilde, where the response y comes from the composition (mole
fraction) of a mixture, here consisting of three components (water,
1,2-ethanediol, 3-amino-1-propanol). These data are an expanded
version of the data used in [4,5], and [6]. The ternary plot for the m =
34 mixtures is provided in Fig. 1. The center data point in the triangle
represents equal concentrations of the three components, the edge
points are mixtures containing only two components, and the corners
are pure. Note that there are 3 pure, 12 edge, and 19 interior (1 center)
mixtures. The components are modeled one at a time, and not jointly.

Corresponding to each ternary mixture, there exists an extremely
rich spectroscopy regressor information, taken under pk ¼ 12 tempera-
ture conditions: (30, 35, 37.5, 40, 45, 47.5, 50, 55, 60, 62.5, 65, 70 °C).
Fig. 2 displays signal regressors (at only two different temperatures)
for each of m = 34 observations. Each “signal” actually consists of
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numerous digitizations (p = 401) along the wavelength axis v (700 to
1100, equally-spaced by 1 nm). The top (bottom) panels present the
raw (first differenced) spectra. The latter will be our choice, which is
in part attractive since constant shifts across spectra are removed.

Notice that the left and right panels of Fig. 2 present signals at the
extreme temperature levels of 30° and 70 °C, respectively. One could

imagine many more given (or interpolated) temperatures, resulting in
a sequence of several “extremely narrow images” to build out a two-
dimensional regressor surface.

2.1. Motivation for this paper

Thus a natural question to ask is: what is the true, or more impor-
tantly, the most useful regressor structure to predict y?

The primary goal is reliable future (external) prediction. The data set
brings someunique structure and several challenges: (a) for all practical
purposes, the response is measured exactly at the molar level, and only
at several dozen concentrations. (b) The rich covariate information has
dimension far greater (at least an order of magnitude greater) than the
number of observations. (c) Internal prediction is not of interest, as it
could be perfectly done, if desired, in infinitely many ways. (d) Oddly,
it is the signal regressors themselves, and not the responses, that change
with changes in the covariate t.

The data structure considered by Marx and Eilers [7] and Marx,
Eilers, and Li [3] is rethought, where in the latter each of the m = 34
mixtures had one image regressor (400 × 12). As such, the composite
of signal regressors was then viewed as fully two-dimensional, where
spatial information was taken into account in both (the wavelength
and temperature) directions, and this information was related to the
response (component concentration). The problem was viewed in the
light of a multivariate calibration with multi-dimensional spectra,
where, e.g., the second dimension was temperature. Fig. 3 illustrates
such a two-dimensional spectra structure with 4800 regressors,
summarized in a 400 × 12 matrix (using first differences), for the
center mixture unit, with corresponding scalar responses (water, 1,2-
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Fig. 1. Ternary plot for mixtures, withm = 34: 3 pure, 12 edge, 19 interior.
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Fig. 2. Signal regressors (raw and first differenced) for mixture experiment, at two different temperatures.
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