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This paper focuses on contrast research of four latent variable multivariate regression (LVMR) methods,
i.e., principal component regression (PCR), partial least square regression (PLSR), canonical correlation
regression (CCR) and reduced rank regression (RRR). The performances are evaluated by mean square
error (MSE). A unified framework, called weight-framework, is proposed, where each LVMR method as well as
the ordinary least square regression (OLSR) can be represented by a specific Weight matrix. Moreover, three
theorems are proved delicately. The first one is coefficient theorem which reveals the relations between the
coefficients estimated by the four LVMR methods and OLSR; the second one is MSE theorem which contrasts
the calibration performances of the different methods; the third one is fault detection rate (FDR) theorem,
which tells the different FDR when LVMR is applied for fault detection. Finally, two simulated data sets and
one real data set collected from a benchmark system validate the correctness of our theoretical results.

© 2015 Elsevier B.V. All rights reserved.

1. Motivations and introduction

1.1. Motivations

Consider the general multivariate linear model

Y ¼ Xβ þ E; ð1Þ

where X ∈ ℝN�nx is the explanatory data with N samples and nx
variables, Y ∈ ℝN�ny is the response data with N samples and ny vari-

ables, E ∈ ℝN�ny is the noise, and β ∈ ℝnx�ny is the coefficient matrix
which maps X onto Y. Note that prior information about E is scarce,
thus we make no more assumption about it. X and Y are centered,
i.e., subtracted from the mean values. Ordinary least square regression
(OLSR) is a standard full rank regression method which is an unbiased
estimation technique. OLSR works well if the calibration samples are
sufficient and are not linearly correlated [5]. However, OLSR tends to
estimate β with large uncertainty in the presence of sample deficiency
and linear correlation [28].

Unlike OLSR, latent variable multivariate regression (LVMR) applies
dimension reduction techniques for chemometric analysis [14,20],
process monitoring [29], and prediction [31,11,6] and experimental

design [6]. This papermainly focuses on four LVMRmethods, i.e., principal
component regression (PCR) [18], canonical correlation regression (CCR)
[13], partial least square regression (PLSR) [12] and reduced rank regres-
sion (RRR) [24].

There are two questions with using LVMR:

1) Can a unified framework for LVMR be proposed, where all the four
LVMR methods can be interpreted?

2) Can some theorems be developed, which reveal clearly the relation
of the coefficients estimated, the calibration MSE and the detection
performance by different LVMR methods and by OLSR?

As for the second question, there are few such theorems yet. As for
the first question, there are some existing results, e.g., an optimization
function framework is proposed in [8], where CCR, RRR and PLSR are
perfectly interpreted, however PCR is an exception; another example is
a statistical framework based on maximal likelihood in [7], where both
PCR to RRR are successfully interpreted, however PLS and CCR do not
arise as members of the framework. To sum up, the existing frameworks
are confined to the optimization functions of LVMR, but some other im-
portant aspects, e.g., the latent variable (LV) structure and the unified re-
gression procedure and performance contrast, are sometimes neglected.

1.2. Introduction

PCR is based on principal component analysis (PCA), which was
developed by Harold Hotelling in the 1930s [15]. It is a technique for
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finding LVs, also called principal components (PCs), from X with
maximal variance [1]. PCA does not consider the information between
X and Y, e.g., the covariance information, this explains why PCR usually
does not guarantee high calibration accuracy in the sense of the
reconstruction mean square error (MSE).

CCR is based on canonical correlation analysis (CCA), which was
first proposed in 1936 by Harold Hotelling [16]. It is a technique for
finding the LV pair from X and Y with maximal correlation [23,26,10].
As introduced in [4], CCA is one of the most popular methods for
investigating the relations between two sets of variables. Since the
correlation information between X and Y is maximally extracted, CCR
tends to give smaller calibration MSE, compared with PCR.

PLSR is based on partial least square (PLS), whichwas first proposed
in 1975 by Herman Wold and then developed by Svante Wold [27].
PLS is a technique for finding the LV pair from X and Y with maximal
covariance. PLSR is particularly suitable when X has more variables
than observations, i.e., nx N N. PLS is frequently applied for analyzing
data from near-infrared reflection (NIR) spectrometry in [22,11,20].
Note that the critical difference betweenPLS andCCA is that PLS extracts
the LV pair with maximal covariance and CCA extracts the LV pair
with maximal correlation [4]. Recently, an error-in-variable (EIV) data
structuremodel is introduced in [21], where amodified PLS formulation
are computationally more efficient than existing PLS-based approach.

RRR is based on redundancy analysis or the best rank approximation
[25,8]. As introduced in [17], RRR is a technique for finding the LVs from
X which can optimally reconstruct Y in terms of MSE. We will see in
Theorem 2 Section 4.3 that RRR guarantees the highest calibration
accuracy on condition that all LVMR methods extract the same number
of LVs.

The rest of this paper mainly focuses on the three questions
mentioned in Section 1.1 and it is organized as follows. In Section 2,
we propose a unified framework, called weight-framework, for LVMR
and performance evaluation. In Section 3, PCR, CCR, PLSR, RRR as well
as OLSR are interpreted in weight-framework. In Section 4, three
theorems about the coefficients, the MSE and the FDR are proposed
and proved. In Section 5, two simulations and one practical benchmark
case are used to validate the theory results.

1.2.1. Notations
This paper uses the standard notations. The transpose, the

Moore–Penrose pseudo-inverse and the Frobenius-norm of matrix
A are respectively denoted asAT, A+ and ‖A‖; Ai denotes the ith column
of A; In denotes the n × n identity matrix; tr(A) denotes trace function
of A, defined to be the sum of the elements on the main diagonal;
A ≥ B means that A − B is a positive semi-definite matrix.

1.2.2. Acronyms
Several frequently-used acronyms are listed in Table 1.

2. Weight-framework for LVMR and performance evaluation

A unified framework, called weight-framework, is proposed for
LVMR and performance evaluation.Wewill see that each LVMRmethod
can be represented by a special weight matrix.

LVMR is used to estimate the coefficient matrix in Eq. (1). Unlike
ordinary least square regression (OLSR), the coefficient estimated by
LVMR is biased and not full rank. Suppose that rx denotes the rank of
X and ‘a’ denotes the number of LVs with a b rx.

For each LVMR method, LVs are extracted according to some
specific criteria. LVs take the form of

T ¼ XW; ð2Þ

where W ∈ ℝk × a is the weight matrix relying on the LV extraction
criteria. Since any nonsingular transformation does not not change
the spanned space of T, we assume that T is orthonormal, i.e.,

TT T ¼ Ia: ð3Þ

Suppose that βT is a linear mapping which maps T onto Y

Y ¼ Tβ T þ F; ð4Þ

then the transpose of βT is usually called ‘loads’ in PCA, CCA and PLS,
and the ordinary least square estimate of βT is

β̂ T ¼ TT T
� �−1

TY: ð5Þ

From Eqs. (5), (3) and (2), we have

β̂ T ¼ WT XT Y: ð6Þ

When Eq. (2) is put into Eq. (4), we have

Y ¼ XWβ T þ F: ð7Þ

When Eq. (7) is compared with Eq. (1), it is reasonable to
estimate β as follows

β̂ ¼ W β̂ T: ð8Þ

From Eqs. (8) and (6), we have

β̂ ¼ WWT XT Y: ð9Þ

When β is estimated, the calibration of Y is

Ŷ ¼ X β̂: ð10Þ

From Eqs. (10) and (9), we have

Ŷ ¼ XWWT XT Y: ð11Þ

From Eqs. (11) and (2), we have

Ŷ ¼ T TT Y: ð12Þ

which means that Ŷ is the orthogonal projection of Y onto T.
Like Ŷ, the new response vector ynew can be predicted based on the

new explanatory vector xnew

ŷnew ¼ xnewβ̂: ð13Þ

Table 1
Acronyms.

Acronym Meaning

LVs/LVMR Latent variables/latent variable multivariate regression
PCA/PCR Principal component analysis/principal component regression
CCA/CCR Canonical correlation analysis/canonical correlation regression
PLS/PLSR Partial least square/partial least square regression
RRR Reduced rank regression
OLSR Ordinary least square regression
MSE Mean square error
QRD QR decomposition
SVD Singular value decomposition
GEVD Generalized eigen-value decomposition
FDR Fault detection rate
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