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Multivariate Curve Resolution (MCR) has been applied on prostate DiffusionWeighted-Magnetic Resonance Im-
ages (DW-MRI). Different physiological-based modeling approaches of the diffusion process have been submit-
ted to validation by sequentially incorporating prior knowledge on the MCR constraints. Results validate the
biexponential diffusion modeling approach and show the capability of the MCR models to find, characterize
and locate the behaviors related to the presence of an early prostate tumor.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Two of the main indicators of a tumor process are the neovasculari-
zation and the increase in cellular density. When a group of growing
cells presents abnormally high demands of oxygen and nutrients, the
tissue responds by creating new vessels (angiogenesis) or developing
existing ones (neovascularization). On the other hand, the biological
process associated with higher cellular densities that leads to cell ag-
glomeration in the tissue is called cellularization. The combination of
both processes is what usually determines the presence of an early
tumor as first steps in oncogenesis. One way to approach this combina-
tion is by studying the tissue local diffusion process [1], which is a phys-
ical process that occurs due to the thermal agitation of the water
molecules inside the human body. These translational displacements
depend, among other factors, on the tissue structure according to the
cellular organization. When the tissue is highly cellularized, the mole-
cules havemore restrictions tomovement due to a decreased interstitial
space and higher cell membrane interfases. However, when the tissue is
highly vascularized, molecules are in a non-restricted high velocity

environmentwithin the vessels, and the spatialmovements are random
with less restrictions in all spatial directions.

The diffusion process can be evaluated with a Diffusion-Weighted
Magnetic Resonance Imaging (DW-MRI). This non-invasive technique
provides high resolution images that are sensitive to water molecules
movement inside the tissues. Depending on the configuration of the
MR equipment and based on the duration and the amplitude of the ap-
plied magnetic field gradient, image acquisition is associated to a pa-
rameter known as b-value [2]. The signal of the image decreases with
the increase in the b-value acquired. This attenuation depends on the
characteristics of the tissue, being stronger if the tissue is vascularized
and much more moderate if it is highly cellular. The range of different
signal attenuations between these two types of tissue at the same b-
value is the basics to study the different behaviors in the diffusion
process.

The DW-MRI acquisition sequence is performed along the volume of
the studied organ. Usually, images are acquired at spatial planes corre-
sponding to different slices of the human body (the number of slices de-
pends on the studied organ). For each slice, images are taken with
different b-values, obtaining a 3D data structure. Thisway, a signal spec-
trum s is extracted from each pixel of the image, associated to the differ-
ent b-values. The number of b-values varies among clinical studies,
reaching up to 10 values for the clinical setting [3]. In our study, 6 b-
values were used for prostate imaging based on previous experience.
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In order to model the signal decay of the diffusion process, spectra
can be fitted with different expressions. The most widely used model
in clinical routine is the monoexponential diffusion model [2] with the
apparent diffusion coefficient (ADC) as its parameter:

s
s0

¼ e−b ADCð Þ ð1Þ

where s0 is the initial value of the signal when the b-value equals zero.
The ADC values express the average distance that the water molecules
cover within a voxel at a certain time. It is related with the cell density,
the permeability of the membranes and the tortuosity of the intercellu-
lar interstitial space. It is called “apparent” because it reflects several dif-
ferent mechanisms, as it is a combination of the two phenomena
expressed before: (i) the movement associated to the water molecules
(Brownian movement), known as slow diffusion (cellular tissue), and
(ii) the intravascular movement in the microcapillaries vessels, known
as fast diffusion or perfusion (vascularized tissue). Fast diffusion may
produce an overestimation of the real diffusion values if not properly
considered.

Themonoexponentialmodel does not take into account the different
mechanisms of the diffusion process. Currently, oneway of dealingwith
this complexity is by using a biexponential model. This is a more com-
plex model that considers two behaviors, slow and fast diffusion,
weighted with a new parameter called vascular fraction (f), which re-
lates to the proportion of vascular tissue in a voxel. This model is also
known as intra-voxel incoherent motions (IVIM) [4] due to the two
types of movements considered, related to cellularity (slow diffusion)
and vascularization (fast diffusion). The expression of the IVIM model
is shown below.

s
s0

¼ 1− fð Þe−bD þ f e−b DþD�ð Þ ð2Þ

The spectra are normalized with s0 as in the monoexponential ap-
proach. Three different parameters must be estimated: the diffusion co-
efficient (D), the pseudo-perfusion coefficient (D*) and the vascular
fraction (f). This way, the normalized signal s/s0 is modeled as aweight-
ed average of the slow diffusion (water movement inside the cellular
tissue, characterized by D) and the fast diffusion (water movement in-
side the vascular tissue, characterized byD+D*). The slowdiffusion be-
havior is weighted by (1− f) and the fast diffusion term by f, since the
major contribution of this phase (in the order of 10 times higher) is
from D* if compared to D; however this last parameter is not so low to
be obviated. Despite the IVIM model is theoretically more appropriate
according to physiological criteria, themonoexponentialmodel is, now-
adays, the most widely used in medical practice to model the diffusion
process.

Besides, the IVIMmodel is not a classic biexponentialmodel because
the two exponential decays are not independent as they are comple-
mentary weighted by the vascular fraction, f. Furthermore, the normal-
ization of the spectra causes a distortion, modifying the shape of the
original curve (Fig. 1a) and decreasing the signal-to-noise ratio (as can
be seen in Fig. 1b). Thus, this standardization reduces the variability
range masking the different behaviors present in the spectra. All these
concepts shown above and the difficulty in the interpretation of the re-
sults provided by these biomarkers (such as D, D* and f parameters)
have limited their applicability in clinical practice.

Furthermore, these biomarkers are obtained from a generally pixel-
by-pixel modeling, which do not take advantage of the relation be-
tween pixels with the same behavior, increasing the uncertainty in
their estimation; and degrading the corresponding imaging biomarkers
(images built from each D, D* and f parameters at each pixel location)
used for clinical purposes.

One possible alternative to analyze these diffusion behaviors is by
applying multivariate statistical models, so that it is possible to take

advantage of the relation between pixels. When dealing with images,
the application of these types of models is known as Multivariate
ImageAnalysis (MIA) [5,6]. Themain characteristic ofMIA is the capabil-
ity to study the whole set of pixels at the same time by extracting the
sources of variation caused by the latent structures present in the im-
ages. In thisway,MIA can help in providing newnon-parametricmodels
that can explain the principal diffusion behaviors extracted from DW-
MRI. It may also be useful to check the appropriateness of the different
modeling alternatives (e.g. monoexponential or biexponential) pro-
posed in the literature.

The main and most widespread MIA tool is PCA (Principal Compo-
nent Analysis) [7]. However, two problems arise when PCA is applied
on DW-MRI data: (i) no prior information can be included in the
model, and (ii) the orthogonality of the principal components is a limi-
tation tomodel the different diffusion behaviors that are not necessarily
orthogonal. In order to overcome these drawbacks, it is possible to use
more flexible models, as is the case of Multivariate Curve Resolution
(MCR), which has been already applied very recently to dynamic
contrast-enhanced MRI data [8].

The goals of this work are: (i) to explore the capability of MCR
methods to model the different behaviors associated to the diffusion
process in DW-MRI helping specialists to detect and characterize early
tumors in the prostate, (ii) to check the adequacy of the different theo-
retical models commonly applied in clinical practice, by sequentially in-
corporating constraints in the MCR algorithm using prior knowledge
about the diffusion process, (iii) to provide new imaging biomarkers
that may complement those commonly used for clinical diagnosis.

2. Materials and methods

The database consists of DW-MRI acquired from 10 patients with
proven prostate carcinoma. The images for each patient were taken
along 12 slices covering the whole prostate. For each slice, images
with a resolution of 192 × 192 pixels were acquired with 6 different
b-values (0, 50, 200, 400, 1000 and 2000 s/mm2) and arranged in a 3D
matrix (192 × 192 × 6) (see Fig. 2a). The output for each patient was
a series of twelve 3D images. All images were anonymized and trans-
ferred to a dedicated workstation for post-processing.

In order to analyze the images by latent-based bilinear multivariate
statisticalmodels, the 3Dmatrix for each slicewas unfolded keeping the
b-values mode yielding a 2D matrix (36,864 × 6) that contains all the
pixels for each slice in rows and the different b-values in columns (see
Fig. 2 right). All the slices from the same patient were studied with
the same model by stacking the unfolded 2D matrices of each slice
one below the other obtaining a data matrix S (442,368 × 6). This way
the fitted behaviors were forced to keep the same internal correlation
structure along the whole prostate volume for a particular patient.

In order to focus the study in the prostate gland, local models were
built for each of the 10 analyzed cases by removing the pixels that do
not pertain to the prostate zone with manual masks provided by the
doctors. This way, the interpretation of the results is improved and the
computational time is hugely reduced.

As already commented, in the diffusion process, the studied phe-
nomena are those related to slow diffusion, associated to cellularization,
and fast diffusion, associated to vascularization. Assuming that the sig-
nal spectrum in a pixel j can be expressed as aweighted sumof different
decreasing exponential functions modeling the different phenomena of
the diffusion process, we propose the following model:

s j ¼
XI

i¼1
ci j αie

−βib
� �

; αi; βi; ci j ≥ 0 ð3Þ

where I stands for the number of exponential functions used. In this
work, models using 1, 2 and 3 exponential functions are proposed.
The triexponential approach is proposed in order to model a possible
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