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We study a local linearization approach put forward by Romera to provide an approximate variance for predic-
tions in partial least squares regression. We note and correct some problems with the original formulae, study
the stability of the resulting approximation using some simulations, and suggest an alternative method of com-
putation using a parametric bootstrap. The alternative method is more stable than the algebraic approximation
and is faster when the number of predictors is large.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Attaching a variance to the predictions made by a partial least
squares (PLS) regression model is not straightforward because the
factor scores onwhich the linear predictor is based are themselves non-
linear functions of the data. Various approximate methods have been
proposed, see Zhang and Garcia-Munoz [1] for a recent review, includ-
ing at least two different approaches that involve local linearizations
of the prediction formula. The method of Denham (Denham [2],
Seerneels et al. [3], and Phatak et al. [4]) expands about the observed
value of the dependent variable. A more recent method, due to Romera
[5] expands about the observed variances and covariances of all the
variables in the data. This is fundamentally different from Denham's
approach in that it takes into account the variability in the predictors
aswell as that in the response variable. In trying to implement this latter
approach as part of a comparative study of methodologies, we discov-
ered some problems with the formulae presented in Romera [5]. The
current paper corrects these formulae, studies their stability, and
suggests an alternative computational approach using a parametric
bootstrap that is more stable and is also faster when the dimension of
the explanatory variables is large.

2. Theory

Suppose we have calibration and prediction sets of data generated
from the following linear models

y
�

c ¼ β0 þ X
�

cβþ �; ð1Þ

y
�

p ¼ β0 þ X
�

pβþ �; ð2Þ

where ẏc and ẏp are calibration and prediction set response variables,
Ẋc (n × k) and Ẋp (np × k) are calibration and prediction explanatory
variable matrices, β0 and β (k × 1) are intercept and regression coef-
ficients, and � is the error term that has a normal distribution with
mean zero and variance σ�

2. The dot on, for example, ẏc denotes an
un-centered variable, and its corresponding centered variable is yc.
To apply PLS regression to such data Romera [5] employs an orthog-
onal scores algorithm.

2.1. Orthogonal scores algorithm

The orthogonal scores algorithm by Martens and Næs [6] is simple,
stable and widely used. With the number of factors chosen to be a, the
i-th step of the algorithm gives the results for the i-th factor, where
i = 1, ⋯, a.
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2.1.1. Calibration
The algorithm starts from the centered calibration datamatrix,Xc1 ¼

Xc.

wi ¼ X0
ci
yc

ti ¼ Xci
wi

pi ¼ X0
ci
ti= t0iti
� �

qi ¼ y0cti= t0iti
� �

Xciþ1
¼ Xci

−tip
0
i

In the i-th step of the algorithm, the column vectorwi (k × 1) is the
weight vector defined by the covariance between Xci and yc. The n × a
score matrix T ¼ t1 t2 ⋯ tað Þ is orthogonal. The k × a weight
matrix isW ¼ w1 w2 ⋯ wað Þ, and the k× a x-loadingmatrix isP ¼
p1 p2 ⋯ pað Þ. The y-loadings vector q is defined as an a× 1 column

vector. In the first step, if wi were scaled to be of length one, the algo-
rithm would become more stable, and it would be easier to compare
scores, but the normalization would not change the regression coeffi-
cient estimate. Helland [7] shows that the PLS1 regression coefficient
estimates can be written as

β̂ ¼ W P0W
� �−1q: ð3Þ

The scores can also be written as T = XcW(P ' W)−1.

2.1.2. Prediction
A prediction by� p can be produced via the score of xp 1 × k. In contrast

to the calibration, where ti is a column of T, the predictor score tp is a
row vector, tp ¼ tp1 tp2 ⋯ tpa

� �
, and the tpi are computed recursive-

ly as

tpi ¼ xpi
wi

xpiþ1
¼ xpi

−tpip
0
i

with xp1
¼ x

�

p−x
�
. Equivalently, tp = xpW(P ' W)−1. The prediction isby� p ¼ y

� þ tpq.

2.2. A random sampling model for the data

We suppose that the (k + 1) × 1 vector c
� ¼ y

�
x
�� �0 , comprising

dependent and predictor variables from one case from either the cali-
bration or prediction set, is randomly sampled from a distribution for
which the covariance of ẏ and ẋ is γ ¼ γ1 γ2 ⋯ γkð Þ0, and the var-
iance matrix of ẋ is Σ with elements σij, 1 ≤ i, j ≤ k. These parameters
can be put in a k(k + 3)/2 × 1 vector ϕ ¼ γ0 vecut Σð Þ0

� �0 , where
vecut denotes an operator that returns a column vector whose elements
are taken in order along the rows, including the diagonal elements,
from the upper triangular part of a symmetric matrix. Let the k × 1
vector sxy ¼ X0

cyc and the k × k matrix Sxx ¼ X0
cXc be the sample sums

of squares and products for the calibration set. Then we denote by b ¼
s0xy vecut Sxxð Þ0� �0 the vector random variable made up of these quan-

tities, and by b0 the actual observed value of the random variable for a
particular calibration set. The random variable b is an unbiased estima-
tor of (n − 1)ϕ.

2.3. Romera's approach

Romera [5] explores thedependence of regression coefficientsβ̂onb
via the y-loadings q. The estimated y-loadings can be expanded about
the observed value b0 of b according to the first-order Taylor expansion

qb ≈ qb0
þ J b−b0ð Þ:

The approximate variance of the estimated y-loadings Var(q) ≈
JVar(b)J', where the Jacobian matrix J (a × k(k + 3) / 2) is the first
derivative of qwith respect to b evaluated at b0, J ¼ ∂q=∂bð Þb0

. Romera

[5] then uses β̂ ¼ Wq which gives Var β̂
� �

¼ WVar qð ÞW0 , so the ap-
proximate variance of xpβ̂ becomes

Var xpβ̂
� �

≈ xpWJVar bð ÞJ0W0x0
p:

However, there are problemswithVar β̂
� �

¼ WVar qð ÞW0. As shown
in Eq. (3), β̂ ¼ W P0W

� �−1q for the orthogonal scores algorithm, and not
β̂ ¼ Wq, which is the result of the PLS1 orthogonal loadings algorithm.
There is also a second problem, in that the weight matrix W is depen-
dent on b, soW cannot be treated as fixed.

2.4. Corrected formulae

Linearizing around b0 we have the following approximate formula
for the variance of xpβ̂ for fixed ẋp

Var xpβ̂
� �

≈ xp
∂β̂
∂b

 !
b0

Var bð Þ ∂β̂
∂b

 !
0
b0
x0

p ¼ VL: ð4Þ

To calculate this we need expressions for Var(b) and for ∂β̂=∂b
� �

b0

.

If we assume that the ċ defined in Section 2.2 is normally distributed,
both the distribution and the variance of b are known from standard
normal theory. Appendix A gives the distribution of b. The algebra for

∂β̂=∂b
� �

b0

is in Appendix B.

2.5. Estimating Var β̂
� �

by a parametric bootstrap

An alternative approach that avoids all the algebra is to use a para-
metric bootstrap to estimate Var β̂

� �
. For the m-th bootstrap sample

(m = 1, …, M), a sum of squares and products matrix is drawn from
the Wishart distribution in Appendix A and bm is extracted from it.
Now we need to calculate β̂

B
m from bm, rather than from Xc and yc. The

formula for doing this was given by Romera [5] and are presented in
Appendix C. The variance of regression coefficients from the bootstrap

algorithm is Var β̂
B� �

¼ n
nþ1

1
M−1∑

M
m¼1 β̂

B
m−β

� �
β̂
B
m−β

� �0
, where β ¼

1
M∑M

m¼1β̂
B
m and the factor n

nþ1 adjusts for the bias in the bootstrap

(See Efron and Tibshirani [8]). The approximate variance of xpβ̂ is

Var xpβ̂
� �

≈ xpVar β̂B
� �

x0
p ¼ VB: ð5Þ

3. Numerical experiments

In this section, we use simulation studies to investigate how the lin-
earization method and its bootstrap version perform under different
conditions. Our purpose is not to carry out an extensive simulation
study, but to demonstrate some of the properties of the method using
a few simple simulations. Each of the N repetitions in the simulation
generates a calibration set of size n = 200 and a prediction set of size
np = 200 using the models in Eqs. (1) and (2) but with ∈ set to zero
in Eq. (2). Taking the additive noise component out of the predic-
tions enables the performance of the variance formulae in
Eqs. (4) and (5) to be seen more clearly. The explanatory variables
are independently and normally distributed with mean 0 and vari-
ances σ2

1 σ2
2 ⋯ σ2

k

� �
in both calibration and prediction sets. The

number of PLS factors isfixed to be a in each of the repetitions. Of course
an extensive simulation study would need to explore both correlated
predictors and the effect of extrapolation, but our purpose here is just
to demonstrate some of the properties of the methods investigated
using a few simple simulations.

For each of the N × np predictions in the simulation we calculate a
squared prediction error and the estimated variances VL and VB given
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