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Extraction of qualitative and quantitative information from large amounts of analytical signals is difficult with
drifted baselines, especially inmultivariate analysis. Baseline drift obscures, “fuzzy” signals, and evendeteriorates
analytical results. In order to obtain accurate and clear results, some effective methods should be proposed and
implemented to perform baseline correction before further data analysis. However, most of the classic methods
require user's intervention or are prone to variability, especially with low signal-to-noise signals in large data. In
this study, a novel baseline correction algorithm based on two-side exponential smoothing algorithm and itera-
tive fitting strategy is proposed. In addition, the iteratively smoothing strategies were creatively implemented in
progressively smoothing the residuals between fitted baseline and original signals. This method, named
Automatic Two-side Exponential Baseline correction algorithm (ATEB), does hardly require user intervention
and prior information, such as peak detection. It's worth noting that the innovative ATEB algorithm has some
obvious advantages, especially, when it comes to the processing speed and corrected accuracy of high resolution
spectral data with large scale dataset. After a series of benchmarks with high resolution spectral datasets and
comparisons with several other popular methods, using various kinds of analytical signals (including hepatocel-
lular carcinoma, MALDI-TOF mass spectrometry, coronary heart disease serum, NMR spectrum and GC–TOF-MS
data), the proposed method is found to be accurate, fast, flexible and easy to use on real datasets.

© 2014 Published by Elsevier B.V.

1. Introduction

In general, the baseline drift is usually one of themain issues in chro-
matograms, mass spectra, Nuclear Magnetic Resonance (NMR) spectra
and other spectral data analyses, especially for chemometric multivari-
ate analysis, since the signals from these analytical instruments com-
monly consist of chemical information, baseline and random noises.
Moreover, the baseline drift affects significantly some fundamental
chemometric algorithms. Therefore it is necessary to fit the baseline
and subtract the background from the analytical signal to alleviate its
negative influence. It is worth noting that the influence of the back-
ground becomes more difficult to fit and subtract from extremely high
resolution datasets, such as NMR spectra and Matrix-Assisted Laser
Desorption/Ionization Time of Flight Mass Spectra (MALDI-TOF-MS).
According to literature, the classic baseline correction method consists
of manually selecting the start and end of a signal peak, and using a
piecewise linear approximation to fit a curve as the baseline [1]. Howev-
er, piecewise approximation is obviously time-consuming and requires

much work especially for large scale dataset, and the accuracy depends
on the users' experience. As a consequence, several flexible algorithms
have been proposed for baseline fitting. Thus, literature from many
fields has been published, mainly involving chromatography, vibration-
al spectroscopy, MALDI-TOF MS, NMR, digital signal processing and
statistics.

First of all, let's start from some classic corrected measures for
common spectrum. It was Pearson and Walter who proposed the first
often cited baseline correction estimation method in 1970 [2]. This
classic algorithm works iteratively and inspects which points lie in a
specific interval related to their standard deviation, distinguishing the
peak points from baseline points simultaneously. Although the
algorithm is computationally efficient, it relies on the choice of two
parameters (denoted by μ and ν), convergence criterion, and finally
the use of a type of smooth curve fitted to the estimated baseline points.
Slight mistake in the parameters would lead to unacceptable results.
Following the research step of Pearson, many excellent researchers
focused their views on improving the baseline correction methods.
Liang et al. [3] introduced the roughness penalty method to decrease
the influence of the measurement noise, and consequently improved
the signal detection and resolution of chemical components with very
low concentrations. Later, Shao et al. proposed another novel approach,
focusing on the determination of the component number of overlapping
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chromatograms and baseline corrections, relying on wavelet transform
for de-noising [4–8]. In order to correct the background of themeasured
spectra during elution in chromatograms, asymmetric least squares
(ALS) was also introduced by Boelens et al. [9]. Subsequently, Cheung
et al. advocated a similar method for preprocessing pyrolysis–gas chro-
matography–differential mobility spectrometry (Py–GC–DMS) data, via
asymmetric least squares (ALS) to eliminate any unavoidable baseline
drift [10]. A new idea ofmorphological weightedpenalized least squares
(MPLS) algorithm was recommended by Li and Zhan [11], which was
successfully applied in the baseline correction of GC–TOF-MS datasets.

Pay attention to the area of vibrational spectroscopy, there also exist
a great number of researchers who have proposed a series of algorithms
for baseline fitting in it. Firstly, Lieber et al. proposed an approach using
least-squares polynomial fitting technique to avoid defects of simple
curvefitting [12]. Then,Mazet et al.modified Lieber'smethod, designing
it to minimize a non-quadratic cost function, which was proved to be
faster and simpler [13]. Regarding near infrared spectroscopy analysis,
Schechter introduced a useful method for the fluctuating non-linear
background [14]. Morháč developed a non-linear iterative peak clipping
algorithm to correct the baseline of various kinds of spectra, such as IR,
NIR and Raman [15]. Zhang et al. succeeded in suppressing fluorescent
background in Raman spectroscopy using wavelet and penalized least
squares algorithm [16,17]. Liland K.H. proposed a customized baseline
correction method which successfully applied in Raman spectra on
melted fat from pork adipose tissue [18]. Moreover, lifting wavelet has
been applied in baseline corrections for Raman and NMR datasets by
Liu and Shao [19].

To the best of our knowledge, many methods previously proposed
by other analysts could be effectively applied to small datasets, such
as low resolution spectra. However, when it comes to the large scale
dataset with high resolution spectra, the research progress has kept
rather a slow pace. As early as 1990s, Dietrich et al. applied the second
derivative to the signal for peak detection and successfully fitted a
NMR baseline with a fifth degree polynomial [20]. Soon afterwards,
Moore and Jorgenson recommended a method using a median filter
with a very broad window [21]. Even though Moore's method was
simple and practical, only peaks with wide baseline segments can be
successfully fitted in NMR signals. In 2005, Mirre E. et al. [22] innova-
tively applied modified asymmetric least-squares algorithm to analyze
the reliability of human serum protein profiles generated with C8
magnetic beads assistedMALDI-TOFmass spectra. A practical algorithm
designated as adaptive iteratively reweighted Penalized Least Squares
(airPLS) was also promoted by Zhang et al. [23,24], by iteratively chang-
ing the weights of sum-squared errors between fitted baseline and
original signals. Recently, Marcelo R. et al. [25] developed a simple
orthogonal background correction (OBGC) method to correct the
complex diode array detector (DAD) background signals in fast online
comprehensive two-dimensional liquid chromatography (LC × LC).
Subsequently, Kuoching Wang et al. [26] presented a novel
Distribution-Based Classification method, Baseline Corrector, for auto-
matically estimating the baselines of metabolomics 1D proton NMR
spectra. Liu et al. innovatively proposed a novel baseline correction
method combing statistic quantile regression algorithm with iterative
strategy named selective iteratively reweighted quantile regression
(SirQR) [27] which was successfully applied to large datasets, such as
GC–TOF-MS and NMR signals. In general, these baseline estimators
have been proven fast and flexible in some extent, and some methods
can be effectively implemented to different kinds of analytical signals
as well.

As mentioned above, many different kinds of chemometric algo-
rithms have been proposed and implemented for treating different
kinds of analytical signals, including both classic methods and novel
algorithms. Thus, it might be a good idea to change our view to the
other analytical fields, for instance, learning something from statistics
and digital signal processing. It is noteworthy that Roger Koenker
proposed a general approach by employing l1 regularization methods

to estimate quantile regression models for longitudinal data [28]. Eilers
et al. developed a fast and effective smoothing algorithm based on pe-
nalized quantile regression for the Comparative Genomic Hybridization
(CGH) signals [29]. Yu et al. suggested a novel quantile-based Bayesian
maximum entropy (QBME) method to account for the non-stationary
and non-homogeneous characteristics of ambient air pollution dynam-
ics [30]. In addition, Mencía and Sentana et al. promoted a new
algorithm using a location-scale mixture of normal representation of
the asymmetric Laplace distribution, transferring different flexible
modeling concepts from Gaussian mean regression to Bayesian semi-
parametric quantile regression [31,32]. Simon Luo and Dave Hale
proposed a new digital signal analytical method where a vector shift
field was used to represent non-vertical deformations in a seismic
image flattening [33]. Robert G. Brown proposed an exponential
smoothingmethod for predicting demand inventory control by an elec-
tric computing system [34]. In practice, the exponential smoothing
algorithm was first suggested by Robert Goodell Brown in 1956 [35],
and then expanded by Charles C. Holt in 1957 [36]. Although the esti-
mates of this exponential smoothing method proposed by Robert are
not statistically efficient, they are economically efficient considering
the cost of computation.Meanwhile, Prajakta S. Kalekar [37] introduced
Holt-Winters Exponential Smoothing algorithm that concentrates on
the analysis of seasonal time series data to analyze two models includ-
ing the Multiplicative Seasonal Model and the Additive Seasonal
Model. Furthermore, Joseph J. LaViola Jr. successfully presented a
novel Filter-Based Predictive tracking algorithm “double exponential
smoothing” for predictive tracking of user position and orientation
[38]. When compared against Kalman and extended Kalman filter-
based predictors with derivative free measurement models, this meth-
od runs approximately 135 times faster with equivalent prediction
performance and simpler implementations [39].

According to the previous literature, polynomial fitting, penalized or
weighted least square, wavelet, derivatives, and robust local regression
have beenwidely adopted in analytic chemistry for baseline corrections.
However, none of these algorithms are entirely perfect for all the prac-
tical applications. Each of them has some drawbacks in certain aspects.
Firstly, simple manual polynomial fitting methods depend on the
analysts' experience for accuracy. Although modified polynomial fitting
method is suitable for themost cases, it cannot work well in low signal-
to-noise and signal-to-background ratio signals. Secondly, the baseline
correction algorithms based on wavelet only remove the baseline suc-
cessfully when the transformed domain of the signal is well-separated.
However, most of the real-world signals do not consent this hypothesis.
Thirdly, robust local regression not only demands the specification of
the bandwidth and tune parameters by the user, but also requires that
the baseline should be smooth and vary slowly. Adaptive iteratively
reweighted penalized least square (airPLS) seems to be the optimal
automatic baseline correction method. However, airPLS depends on
the penalized least squares, which is not robustness enough. Last but
not least, the most important problem is that when the analysis signals
become an extremely large scale with high resolution,many algorithms
cannot offer to process them efficiently and effectively. On the other
side, in the smoothing strategies, a classic smoothing algorithm desig-
nated penalized least squares was proposed by Whittaker in 1923 [40]
,without setting zeroes to theweight vectors at positions corresponding
to peak segments. A detailed baseline correction treatment with several
related applications has been presented by Eilers [41]. However, the
error value of minimized Q2 is not robustness enough, and can be
enlarged by square especially for real-world signals. Moreover, asym-
metric least squares, whichmeans asymmetric weights of least squares,
has been widely applied to different kinds of baseline correction
algorithms, such as ALS method by Eilers [42] and EBS(eliminate the
background spectrum)method byBoelens et al. [9] Although theALS al-
gorithm is effective and useful to some extent, it has some drawbacks.
On the one hand, two parameters, namely asymmetric and smoothing
parameters, need to be optimized to obtain satisfactory results. On the
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