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The Arrhenius equation kA = Ae−E/Rt has found numerous applications throughout chemical kinetics for diverse
rate processes. This equation involves the assumption that the pre-exponential factor, A, does not vary with
temperature. For simple reactions, deviations from this equation are usually quite small, and in only a few
instances are they at all readily detectable. However kinetic measurements over wide ranges of temperature
show up the inadequacy of the Arrhenius expression (Smith, 2008 [1]). The temperature dependence of the
linear parameter is widely used as an alternative model. Consequently, a correct selection of the model and a
correct estimation of the parameters are crucial tasks.
The focus of this paper is the construction of a new procedure based on the multiplicative algorithm in order to
determining optimal experimental conditions for discriminating between two rival models. Even for moderate
examples the calculation of T-optimal designs is not straightforward. There are no known specific iterative
numerical techniques for constructing T-optimum designs; there is just the classical adaptation of the Wynn–
Fedorov scheme (Atkinson and Fedorov, 1975 ; Fedorov and Hackl, 1997), which is far from being satisfactory
to solve these computational problems.
The results are illustratedbynumerical examples for different deviations of theArrhenius equation. On theother hand
we demonstrate in several examples that the new algorithm is more efficient than those existing in the literature.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The Arrhenius equation was initially developed in 1884 by Svante
August Arrhenius through his studies of dissociation of electrolytes.
Currently it is widely accepted to describe the influence of temperature

on the rates of chemical and biological processes such as abstraction
reaction, bimolecular reactions in gaseous hydrocarbon chemistry,
solid–solid reactions, crystallizations, desorption gases adsorbed on
solid surface and sintering, and metabolism, growth, development and
fitness, respectively. This model expresses the rate of a process k in
terms of temperature t,

E kAð Þ ¼ Ae−B=t
; var kAð Þ ¼ σ2

; t ∈ T ¼ T1; T2½ �; T1≥0: ð1Þ
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The parameter A is known as the Arrhenius A-factor or frequency
factor and B expresses the activation temperature through the relation-
ship, B ¼ E=R;E, being the difference of energy between the activated
and the inert states and R being the gas constant. When this is so, the
theory of absolute reaction rates can be used to evaluate the entropy
and the enthalpy of activation for the process. The Arrhenius equation
thus predicts a linear relationship between ln(kA) and t−1. The observa-
tion errors are assumed to be independent and have mean zero and
constant variance.

For the analysis of more precise rate-temperature data, particularly
in studies covering a wide temperature range, it is evident that the
Arrhenius equation fails to express fully the temperature dependence
of reaction velocity (see for example [1,4]). In biological processes, a
critical assumption of the Arrhenius model is that the probability that
the rate-limiting enzyme is in this active conformation is 100% and
that this does not vary within the physiological temperature range
[5,6]. If the probability that the rate-limiting reaction is in active form
declines at high or low temperatures within the physiological tempera-
ture range, then this will make the relationship between ln(kA) and t−1

concave rather than linear.
The Arrhenius equation assumes that the pre-exponential factor A is

temperature independent, but for some kinetic systems it has been
observed that the enthalpy, or heat content change of the activation
process, is temperature dependent. Quite substantial errors can be
introduced if a linear Arrhenius extrapolation of low and high tempera-
ture date is made. The simplest way to express this dependence is as a
power series in t [7,8]. They proposed that the pre-exponential factor
is connected with the temperature through the following relationship
A = A0t

m,

E kMAð Þ ¼ A0 � t
me−B=t

; var kMAð Þ ¼ σ2
; ð2Þ

where A0 is a constant and values of m ranging from −2 to 5. The
original Arrhenius expression above corresponds to m = 0. Thus m is
equal either to 1 in the case of the thermal decomposition of a single
solid reactive or to 1/2 for reactions between a gas and the surface of a
solid. Segal [9], Varghegyi [10] and Dollimore [11] have considered
other positive values for this exponent. On the other hand, values of m
from 0 to 2.5 have been proposed for the case of reactions of desorption
of gases from surface of solids. Moreover, values of m from −3/2 to 0
have been proposed for shrinkage processes depending on the sintering
mechanism (see [12]). In that work the importance of the dependence
of the pre-exponential factor on the temperature is shown. They proved
that the error introduced by omitting the dependence of A on t is
considerably larger than the error due to the Arrhenius integral
approach used for carrying out the kinetic analysis of data.

Estimation issues for these models have been extensively discussed
in the literature in recent years (see [13,3] among others). However, the
design problem for discrimination between models has had much less
attention and has been developed for simple models only.

The aim of this paper is to obtain an efficient algorithm in order to
determining optimal experimental conditions for discriminating
between the competing models. Atkinson and Fedorov [2,14] intro-
duced the so called T-optimality criterion which has an interesting
statistical interpretation as the power of a test for the fit of a second
model when the other is considered as the true model. Usually there
is no closed form for the T-optimum design and it must be constructed
through an iterative procedure. In this work, we study a new algorithm
to determining T-optimal designs based on the approach of themultipli-
cative algorithm proposed by Torsney and Martín-Martín [15]. This
algorithm will be used to provide researchers optimum designs to
discriminate between the Arrhenius equation and non-Arrhenius
behaviors. These designs have not been computed, while D-optimal
designs to perform the best estimation of the parameters following D-
and C-optimality criteria can be founded in Dette and Sperlich [16]
and Rodríguez-Díaz and Santos-Martín [17].

1.1. Optimum design background for non-linear models

Consider the general non-linear regression model

y ¼ k t; θð Þ þ ε; t ∈ T ;

where the randomvariables ε are independent andnormally distributed
with zeromean and constant variance σ2 and θ is the unknown param-
eter vector.

Suppose an experiment is to be designed subject to the constraint
that the design variable, t, be in a compact set of a Euclidian space, T ,
called design space. Let Ξ be the set of probability distributions on the
Borel sets of T , then any ξ ∈ Ξ satisfyingZ
T
ξ dtð Þ ¼ 1; ξ tið Þ ≥ 0; t ∈ T ;

is called a design measure, or an approximate design. Kiefer [18]
pioneered this approach, and itsmany advantages arewell documented
in design monographs, e.g. [19].

For convenience, the design will be described using a two row
matrix with the different support points displayed in the first row, of
t1, …, tN, and their corresponding proportion of observations, ξ(ti) =
pi, in the second,

ξ ¼ t1 t2 … tN
p1 p2 … pN

� �
;

being p1, …, pN non-negative real numbers which sum up to one.
The paper is organized as follows. In Section 2, themain concepts on

discrimination between two-rival models are presented. The new
approach based on multiplicative algorithms to discriminate between
two rival models is provided in Section 3. The aim of Section 4 is to
solve the problem of discriminating between both Arrhenius model
and themodified-Arrheniusmodel. Also a robustness study is presented
in this section. Conclusions and some final remarks are stated in the last
section.

2. Design of experiments to discriminate between two-rival models

The formulation of an adequatemodel is a crucial step in successfully
answering a query about the behavior of an experimental system. The
experimenter is frequently faced with the situations that existing data,
experimental or theoretical, satisfy two or more mathematical models.
Before proceeding to further investigations (for example, the precise
estimation of several parameters) it is necessary to set up an experi-
ment thatwould permit discrimination between themodels. The design
of a suitable experiment consist in finding those points at which the
resulting observations are far from being invariant with respect to a
change from one mathematical model to another. The experiment that
best discriminates between the models, the optimal discriminatory
experiment, is not generally known. In fact, the only way to determine
this would be to perform all possible experiments, something we
obviously want to avoid. This leads to the question of how to select an
appropriate sampling strategy. The most popular design criterion for
model discrimination is T-optimality which was proposed by Atkinson
and Fedorov [2].

The main goal of this work is to provide an efficient numerical
method to construct a good design to discriminate between models, in
particular, the T-optimum design to discriminate between Arrhenius
equation and modified-Arrhenius model is obtained. It will be used to
say whether it is adequate to apply the simpler Arrheniusmodel or not.

In the following, consider a basic scheme when two models are of
interest. This corresponds to the situation in which yil are given by

yil ¼ k ti; θð Þ þ εil i ¼ 1 …;N; l ¼ 1;…; rið Þ
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