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Rayleigh and Raman scatter in fluorescence (excitation–emission) landscapes are a nuisance in two-way and
three-way data modeling. We provide a method to clean individual emission spectra. The scatter can be repre-
sented accurately by Gaussian peaks, characterized by location, width and height. The analytic signal of interest
effectively acts as a background to the scatter peaks. Modeling it locally as a smooth curve, using penalized least
squares, allows accurate estimation of the parameters of scatter peaks. Once the peaks are modeled, they can be
subtracted from the spectrum, almost completely removing the artifacts. Apart from local smoothness, no as-
sumptions are made about the fluorescence spectra.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the success stories ofmulti-waymodels is their application to
chemical spectra [1,2]. Here we consider fluorescence excitation–
emission spectroscopy in which the components, representing chemi-
cal species, are known to be bilinear. Unfortunately, Raman and Ray-
leigh scatter usually are present. They can be quite strong, ruining the
good fit of a model to the data.

Several techniques have been proposed for handling scatter in two-
way and especially three-way fluorescence data when the intention is
to model the signal. Most available methods [3–5] attempt to eliminate
the offending artifacts. In Bahram et al. [4] the following methods are
mentioned: downweighting of the scatter region [6–8], subtraction of
a standard [9], inserting missing values for the scatter [10], inserting
zeroes outside the data area [8], avoiding the part of the data matrix
which includes the scatter, applying constraints to themodel for the sig-
nal [11,12], and modeling the scatter via two-way component models
[8]. Their own proposal is to eliminate the scatterwhere signal and scat-
ter overlap via interpolation, using themodel to be fitted, thus intimate-
ly linking the handling of scatter to the fitting of the signal. In addition,
Engelen et al. [3] proposed to treat each point of the scatter as an outly-
ing observation with respect to the model and to eliminate it if it is too
far away from themain body of the data. Attempts have also beenmade
to indirectly model the scatter and the signal more or less independent-
ly using component models, especially within the context of three-way

data [8]. Each of thementioned papers gives further comments and ref-
erences about the background to the problems and ways in which
attempts have been made to solve the fitting of the signal in the pres-
ence of scatter. Note that all but the papers by McKnight et al. [9] and
Zepp et al. [5] deal with modeling three-way data, indicating the need
for appropriately handling scatter ridges in that context.

The proposal in the present paper attacks the core of the problem, in
the sense that it defines explicit and well-fitting models for both the
Raman and Rayleigh scatter, making relatively mild assumptions. In
particular, the assumption is that the ridges in the landscape can be
modeled with separate normal distributions along the excitation wave-
length. With this approach it will also be possible to assess in great de-
tail the nature of the scatter itself. Due to the regularity in the scatter,
estimates of the fluorescence intensity can be made at the same time
for those locations in the landscape where it overlaps with the signal.
The result of our fitting procedure is that the scatter in the excitation–
emission matrix landscape can be eliminated in a very precise manner,
without compromising the signal itself. Moreover, the estimation is in-
dependent of the type of signal and how it is being modeled. Thus, we
use the characterization that Data = Scatter + Signal + Noise, and
our concern here is exclusively with the Scatter part.

Our procedure cleans individual emission spectra, so it is also useful
outside the realm of multi-way data analysis.

2. Models for scatter

Figs. 1 and 2 show a typical excitation–emission fluorescence land-
scape. Rayleigh scatter (both primary and secondary), as well as Raman
scatter are visible as diagonal ridges. The primary and secondary Rayleigh

Chemometrics and Intelligent Laboratory Systems 130 (2014) 1–5

⁎ Corresponding author.
E-mail addresses: p.eilers@erasmusmc.nl (P.H.C. Eilers), kroonenb@fsw.leidenuniv.nl

(P.M. Kroonenberg).

0169-7439/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.chemolab.2013.09.002

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r .com/ locate /chemolab

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2013.09.002&domain=pdf
http://dx.doi.org/10.1016/j.chemolab.2013.09.002
mailto:p.eilers@erasmusmc.nl
mailto:kroonenb@fsw.leidenuniv.nl
http://dx.doi.org/10.1016/j.chemolab.2013.09.002
http://www.sciencedirect.com/science/journal/01697439


scatter ridges center quite closely to the lines λem = λex and λem = 2λex,
respectively. Raman scatter also forms a straight ridge, but its center line
does not follow such a simple relationship: slope and offset vary between
data sets.

The datawere obtained from the Department of Food Science, in the
Faculty of Life Sciences of the University of Copenhagen (http://www.
models.kvl.dk/Fluorescence). See also Bro et al. [13].

Because the secondary Rayleigh scatter manifests itself in a region
where there is essentially no analytic signal, we can get rid of it very
simply, by limiting the excitation wavelength to values below 450 nm.

The perspective view already gives the impression that the observed
scatter signals have a Gaussian shape, along the emission wavelength.
This impression is amplified by Fig. 3, where we show cuts through
the fluorescence landscape at three excitation wavelengths. Our strate-
gy will be to model the scatter in individual emission spectra by

Gaussian curves using non-linear regression. Three parameters describe
such a curve completely: position, height and width.

Assuming that good starting values are provided, fitting of Gaussian
curves to data is not difficult. The problem is that we do not only have
the Gaussian curves but also the signal. In the upper and lower panels
of Fig. 3 the scatter peaks are clearly separated from the signal, or the
signal under the peak is weak. The middle panel shows a less favorable
situation. Both primary Rayleigh and Raman scatter are superimposed
on a strong signal. Trying to fit a Gaussian curve locally will lead to use-
less results.

To solve this problem, we locally model the signal as a smooth base-
line. Locally means that for each excitationwavelength and each type of
scatter we select an appropriate section of the emission wavelengths,
which is known to contain the scatter peak. Because of the linear
trend of the centers of the scatter peaks and their stable widths, it is
not hard to define such windows. Details will be presented below.

Themodel for the fluorescence intensity is, at excitationwavelength
j and emission wavelength i:

yij ¼ bij þ g xi;α j; μ j;σ j

� �
þ eij; ð1Þ

where bij represents the signal as a smooth baseline, xi the emission
wavelength, and eij random noise. The Gaussian shape is described by
the function g; exp αj, gives its height, while μj determines its location
and σj its width, as can be seen from its definition:

g xi;α j; μ j;σ j

� �
¼ exp α j−

xi−μ j
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To simplify the equations,we drop the subscript jwhenno confusion
can occur. Note that we do not divide g byσ

ffiffiffiffiffiffi
2π

p
as is the case for a nor-

mal density.
Our objective function is

S ¼
X
i

yi−bi−g xi;α; μ;σð Þð Þ2 þ λ
X
i

Δ2bi
� �2

: ð3Þ

The first term in Eq. (3) is the familiar sum of squares of differ-
ences between data and model. The second term is a penalty on
roughness of b, based on second order differences of b; note that
Δ2bi = bi − 2bi − 1 + bi − 2. When b is smooth, second order differ-
ences will be relatively small and this term will not contribute much
to the objective function. The parameter λ balances fidelity to the data
and smoothness of the baseline. The penalty term is inspired by the
Whittaker smoother [14].

The objective function is non-linear in the parameters α, μ and σ. If
we consider small changes δα, δμ and δσ, the first-order Taylor expan-
sion gives:

g x; μ þ δμ;σ þ δσð Þ≈g x; μ;σð Þ δα þ uδμ=σ þ u2δσ=σ
� �

; ð4Þ

where u = (x − μ) / σ. Using the partial derivatives, the non-linear re-
gression problem becomes linear in δα, δμ and δσ and will be easy to
solve.With proper starting values it converges in a handful of iterations.
If no baselinewere present, this is an effective approach to fit a Gaussian
shape to scatter peaks.

A simple way to handle the baseline is to use back-fitting.
Alternatingly one fits the Gaussian peak after correction for the baseline
and one recomputes the baseline (by Whittaker smoothing) after re-
moving the peak. Convergence is relatively slow: about 100 iterations
can be needed to arrive at a precision of four significant figures. On
the other hand, on amodern PC, one iteration takes about amillisecond,
so it takes only a few seconds to correct one type of scatter for all exci-
tation wavelengths.
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Fig. 1. Waterfall view of an excitation–emission landscape. The diagonal ridges, from left
to right, represent artifacts caused by primary Rayleigh scatter, Raman scatter and second-
ary Rayleigh scatter. To improve visibility of the peaks, the vertical scale has been set pro-
portional to the square root of fluorescence intensity. The three spectra drawn with
thicker lines are shown individually in Fig. 3.
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Fig. 2. Image view of the excitation–emission landscape. The diagonal ridges, from left to
right, represent artifacts caused by primary Rayleigh scatter, Raman scatter and secondary
Rayleigh scatter. To improve visibility, the color scale has been set proportional to the
square root of fluorescence intensity.

2 P.H.C. Eilers, P.M. Kroonenberg / Chemometrics and Intelligent Laboratory Systems 130 (2014) 1–5

http://www.models.kvl.dk/Fluorescence
http://www.models.kvl.dk/Fluorescence


Download English Version:

https://daneshyari.com/en/article/1180660

Download Persian Version:

https://daneshyari.com/article/1180660

Daneshyari.com

https://daneshyari.com/en/article/1180660
https://daneshyari.com/article/1180660
https://daneshyari.com

