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This paper considers cross-validation based approaches to automatically determine the appropriate number of
dimensions to retain in a Principal Components Analysis (PCA). Three approaches based on a mixture of leaving
groups of observations and variables out are described. They are compared through simulation across a range of
datasets of differing sizes and differing levels ofmissingness using theNIPALS algorithm to carry out the PCA. Also
included in the paper is an explicit description of how the NIPALS algorithm is implemented to deal withmissing
data. Finally we provide suggestions as to which approach offers a better compromise between reliability in
choosing the optimal number of components, and the computational burden.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Principal Component Analysis (PCA) continues to be one of themost
commonly used approaches to chemometric data analysis providing
insight into (often high-dimensional) multivariate data by a lower di-
mensional representation. PCA provides components which are a linear
combination of the variables where most of the data's variability is
usually contained in the first few components. There are a number of
mechanisms that are commonly used to determine the optimum
number of components. Jackson [1] covers a few of these in great
detail in his book and he asserts that cross-validation techniques
have evident advantages over most of the existing techniques. The
optimum number of components refers to the minimum number of
components required to sufficiently explain the data. However, it
may be necessary to take into account other factors when deciding
the optimum number of components, such as the purpose of the
PCA, or the cost of using too many or too few components. The sug-
gestion for using cross-validation to determine the optimum number
of principal components was first introduced by Wold [2] and was
further developed by Eastment and Krzanowski [3]. Krzanowski and
Eastment's approach (K + E) assumed complete data and carried out
a full leave-one-out cross-validation using the singular value decompo-
sition for performing the PCA. In practice, PCA is regularly applied to
incomplete data via Nonlinear Iterative Partial List Squares (NIPALS) al-
gorithm [4]. In addition concerns over the heavy computational burden,

and the risk of over-fitting due to perturbations, both associated with
leave-one-out approaches in large datasets [5], have led to a modified
version of K + E being implemented in SIMCA-P + © [6]. In 2008,
Bro et al. [7] critically looked at some of the existing cross-validation
methods used in software packages, highlighting their deficiencies.
Here we implement, compare, and evaluate three different variations
of cross-validation techniques using the NIPALS algorithm to carry out
the PCA. In the sections that follow we provide explicit details of the
NIPALS algorithm applied to incomplete data matrices, discuss how to
implement the standard, K + E, and Modified K + E cross-validation
algorithms and carry out a number of simulation studies in R [8] to
investigate their performance for different sizes of data matrix and
different levels of missingness. Our conclusion is based on the perfor-
mance of three methods on simulated datasets defined by six datasets.
In turn, these datasets are random samples, taken from two original
real-life datasets with different levels of missingness. We understand
that this is potentially a major limitation of our study.

2. Methods

2.1. PCA

Background references to PCA are given in numerous papers and
books [1,9–11]. We do not intend to add to this but we simply provide
the following to introduce the notation and terminology used in this
paper.

In what follows we shall use bold uppercase letters (e.g. X) to rep-
resent matrices, bold lowercase letters (e.g. x) to represent vectors
and normal lowercase letters (e.g. x) to represent scalars.
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Let X represent an (n × m) data matrix containing the observed
values of m measured variables (columns) on n units of observations
(rows) so that

X ¼ xi; j
� �

i¼1;…;n; j¼1;…;m

where xi,j represents the value of the jth variable on the ith observation.
In addition,we denote the jth columnofX by xj. Assuming our PCA is

based onm' ≤ min(n,m) components, we denote the set ofm′ “loading”
vectors as the (m × m') matrix Pwith individual columns pk(k = 1,…,
m') and the associated set ofm′ “scores” vectors as the (n × m') matrix T
with individual columns tk(k = 1,…, m') such that T = XP.

Whilst a number of algorithms exist for performing PCA, the NIPALS
algorithm has found particular favour within the Chemometrics com-
munity in part due to the algorithm's ability to produce results in the
presence of missing values within the data matrix. Since previously
published versions of the NIPALS algorithm have typically been written
assuming that the data matrix is complete, we provide algorithmic
details below.

In what follows wewill assume that prior to applying the algorithm,
the ‘raw’ data matrix has already been pre-treated, e.g. by subtracting
column means and dividing by column sample standard deviations
based on the non-missing data for the relevant column.

2.1.1. NIPALS algorithm for incomplete data matrix
1. Π(0) := X

For k = 1,…, m':
2. Initialise tk, the vector of scores for the kth principal component, for

example using the first column of Π(0).
3. Repeat steps 3.1–3.4 until convergence:

3.1. Update the loading vector, Pk for the kth component:

pjk :¼
X

i∈R j
π k−1ð Þ
jk tikX

i∈R j
t2ik

where Rj is the set of row subscripts for the non-missing
elements of column j of X.

3.2. Normalise the loading vector for the kth component:

pjk :¼
pjkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j
p2jk

q

3.3 Update the scores vector, tk for the kth component:

tik :¼
X

j∈Ci
π k−1ð Þ
ij pjkX

j∈Ci
p2jk

where Ciis the set of column subscripts for the non-missing
elements of row i of X.

3.4. Compute λk, the eigenvalue as below:

λk :¼ tk
T tk

4. Π(k) = Π(k − 1) − tkpk
T

The above process can easily be converted to a computer program
in any high level programming language.

As seen, the data is projected onto the current estimate of the load-
ing or score vector and in the presence of missing data, the minimum
distance projections of the missing values are imputed [12]. This
shows how one can efficiently utilise NIPALS for model building in
the presence of missing values [12].

It is worth emphasising that the handling of missing data is not a
straightforward matter and the success is greatly dependent on the
size and nature of the missing items. In general, NIPALS is applicable
when the missing values are randomly distributed amongst the data,
i.e. missing completely at random, and when the number of missing
values does not exceed 20% [12,13].

2.2. Choice of number of components

As seen, NIPALS extracts one principal component at a time and it
can stop when the desired number of components is retained but
there are no universally accepted rules for making a decision on the
sufficient number of principal components. However there are a num-
ber of mechanisms that are commonly used to determine the optimum
number of components; range from significance test to graphical proce-
dures. Velicer's Partial Correlation Procedure [14], The Scree Test [15],
and Malinowski's Indicator function [16] are just a few of these tech-
niques that introduce criteria for optimality. Amongst different methods,
Jackson [1] asserts that cross-validation techniques have evident ad-
vantages over most of the existing techniques. Two commonly used
cross-validation methods, together with a previously unpublished
technique will be explained. Our aim is to explain these methods
with a sufficient level of algorithmic details so that with a compre-
hensive simulation study we can assess the weakness and strength
of the methods, both statistically and computationally.

2.3. Standard cross-validation

Standard cross-validation in PCA, as describe by Jackson [1], starts
with randomly subdividing the data matrix into ‘g’ groups of n/g obser-
vations each.Without loss of generality we order the subgroups as they
appear in the original data matrix X.

X ¼
X1

X2

⋮
Xg

2
6664

3
7775

Each subgroup will then be left out from the dataset in turn and
NIPALS is applied on the remaining data to obtain the first k loading
vectors for them:

P ¼ p1;p2;:::;pkð Þ←NIPALS X −tð Þ� �
;m′ ¼ k

� �
ð1Þ

X(−t) denotes the remaining data after leaving tth subgroup out (i.e.
[X1

T ,...,Xt − 1
T , Xt + 1

T ,...,Xg
T]T) where t = 1,2,…,g

We can estimate the score matrix T for the left out subgroup Xt:

T ¼ XtP ð2Þ

We can now estimate values for the left out subgroup based on the
first k components:.

X̂ kð Þ
t ¼ T PT ð3Þ

X̂ kð Þ
t denotes the matrix of estimated values for the left out subgroup Xt

based on the first k components.
Up tom − 1 sets of predicted values will be obtainable for each left

out group via this method by separately using the first component, first
two components, first three components, and so on:

X̂ 1ð Þ
i ; X̂ 2ð Þ

i ; :::; X̂
m′ð Þ

i where m′
bm
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