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In this paper, a support vector regression algorithm in the sum of reproducing kernel Hilbert spaces (SVRSS) is
proposed formultivariate calibration. In SVRSS, the target regression function is represented as the sumof several
single kernel decision functions, where each single kernel function with specific scale can approximate certain
component of the target function. For sum spaces with two Gaussian kernels, the proposedmethod is compared,
in terms of RMSEP, to traditional chemometric PLS calibration methods and recent promising SVR, GPR and ELM
methods on a simulated data set and four real spectroscopic data sets. Experimental results demonstrate that SVR
methods outperform PLS methods for spectroscopy regression problems. Moreover, SVRSS method with multi-
scale kernels improves the single kernel SVR method and shows superiority over GPR and ELM methods.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate calibration (MVC) is a very useful tool for extracting
chemical information from spectroscopic signals by building a regres-
sion relation model between the spectra and corresponding concentra-
tions. Traditional MVC techniques usually assume a linear spectra–
concentrations relation, such as multiple linear regression (MLR), prin-
cipal components regression (PCR) and partial least squares regression
(PLS) [1,2]. Among these methods, PLS is most widely used in
chemometrics.

PLS projects the high-dimensional predictor variables into a smaller
set of uncorrelated latent variables which have a maximal covariance to
the responses. It is followed by a regression step where the latent vari-
ables are used to predict the responses. PLS is especially effective in situ-
ationswhere the number of variables considerably exceeds the number of
observations and in the presence of collinearity predictor variables [1].
However, when the data exhibits strong nonlinear behaviors, classical
PLS method may not completely present the relationship between the
spectra and corresponding concentrations and thus would produce
large errors.

Support vector regression (SVR) method has been introduced as
promising alternatives to the existing linear and nonlinear MVC ap-
proaches [3]. To describe the relation between the regressors and the
dependent variables, SVR chooses a function that fits the data well in
the sense of �-insensitive loss cost, but is not too complex. Based on

the representer theorem [4], SVR decision function can be represented
as a finite linear combination of kernel products evaluated on the
input samples in the training set. Thus, by choosing a nonlinear kernel,
such asGaussian kernel, SVR can easily implement nonlinear regression.
SVR has exhibited good prediction performance for spectroscopy re-
gression [3,5,6]. However, the capability of single kernel SVR is badly
limited in mining abundant information from training samples. It is un-
suitable to use the standard SVR to estimate complex nonlinear spec-
troscopy regression relations containing both the steep and smooth
variations as it will either underfit the steep part or overfit the smooth
part [7,8].

For spectroscopy regression problems, the regression function be-
tween the spectra and corresponding concentrations may take on
non-flat characteristics as the ideal linear spectra–concentrations rela-
tion based on the Beer–Lambert law is usually corrupted by many
nonlinear chemical and instrumental factors [9,10]. In this case, multi-
scales kernel is more efficient than single kernel as the kernels with
small and large scales can deal with the high-frequency and low-
frequency components in a non-flat function, respectively.

In this paper, for multivariate calibration purpose, a support vector
regression algorithm in sum space (SVRSS) is proposed. The target func-
tion of SVRSS is represented as the sum of several single kernel decision
functions, where each single kernel decision function can approximate
different components of the target function.

2. The algorithm

Given a training set S = {(x1, y1),…,(xn, yn)}, the problem of learn-
ing is to choose a function that best approximates the supervisor's re-
sponse [11]. The problem of approximating a function from finite
sparse data is usually ill-posed, and classical regularization strategy
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can be used to solve the problem by choosing a function that fits the
training data well, but is not too complex (with small norm):

f ¼ argmin
f∈H

Xn
i¼1

V yi; f xið Þð Þ þ λ
2

fk k2K ð1Þ

where ‖ f‖K2 is a norm in reproducing kernel Hilbert space (RKHS)H de-
fined by the positive definite function K, λ is the regularization param-
eter, and V(∙,∙) is a loss function. When V is chosen as Vapnik's �-
insensitive loss,

V yi; f xið Þð Þ ¼ yi− f xið Þj j� ¼ max 0; yi− f xið Þj j−�ð Þ ð2Þ

the regularization problem (1) corresponds to support vector regres-
sion (SVR).

Based on the representation theorem [4], the solution of Eq. (1) is

f xð Þ ¼
Xn
i¼1

αiK x;xið Þ: ð3Þ

Assume that there are m Mercer kernels K1,…, Km. The function f in
the sum spaces RKHSs induced by these kernels can be represented
as: f ¼ ∑m

t¼1 f t ; f t∈HKt , which is theminimizer of the following optimi-
zation problem:

min
f t∈HKt

Xn
i¼1

yi−
Xm
t¼1

f t xið Þ
�����

�����
�

þ 1
2

Xm
t¼1

λt f tk k2Kt
: ð4Þ

According to Eq. (3), ft can be represented as ft = Ktαt, αt = (αt,1,
…,αt,n)T. We can rewrite the optimization problem (4) using slack var-
iables ξ and ξ⁎:

min
α;ξ;ξ�

Xn
i¼1

ξi þ ξ�i
� �þ 1

2

Xm
t¼1

λtα
T
t Ktαt ð5Þ

under the constraints

yi−
Xm
t¼1

Kt;xi
αt≤�þ ξ�i

Xm
t¼1

Kt;xi
αt−yi≤�þ ξi

ξi; ξ�i ≥0; i ¼ 1;…;n:

A Lagrange functional is constructed to solve the above problem

L ¼
Xn
i¼1

ξi þ ξ�i
� �

−
Xn
i¼1

βi yi−
Xm
t¼1

Kt;xi
αt þ �þ ξi

 !

−
Xn
i¼1

β�
i

Xm
t¼1

Kt;xi
αt−yi þ �þ ξ�i

 !

−
Xn
i¼1

γiξi þ γ�
i ξ

�
i

� �þ 1
2

Xm
t¼1

λtα
T
t Ktαt :

Minimization with respect to αt implies

α̂t ¼ β�−β
� �

=λt

where the Lagrangemultipliers β⁎ and β can be obtained by solving the
following quadratic programming (QP) problem:

min
θ

1
2
θTHθ−θTc

s:t: 0≤θ≤1
ð6Þ

with

θ ¼ β�

β

� �
; c ¼ �−y

�þ y

� �
; H ¼

Xm
t¼1

Kt=λt −
Xm

t¼1
Kt=λt

−
Xm

t¼1
Kt=λt

Xm
t¼1

Kt=λt

" #
:

The decision function of SVR in sum space (SVRSS) is

f xð Þ ¼
Xm
t¼1

f t xð Þ ¼
Xm
t¼1

Xn
i¼1

α̂t;iKt x; xið Þ:

3. Experimental

To evaluate the performance of the proposed method, a simulated
data set and four real spectroscopic data sets are used.

3.1. Data sets

Data set 1 consists of NIR spectra from 310 pharmaceutical tablet
samples with a relative active substance content (%, w/w) in the range
of 4.6–9.8% [12,13]. The transmittance spectra have 404 variables col-
lected in the range of 7400–10507 cm−1. The 310NIR spectra are divid-
ed into 150 calibration samples, 80 validation samples and 80prediction
samples based on the SPXY (Sample set Partitioning based on joint x–y
distances) algorithm [14].

Data set 2 is from the Software Shootout at the IDRC98 containing
NIR spectra of 141 fescue grass powdered samples with specified car-
bon, nitrogen and sulphur contents ranging from 29.6% to 40.9%, 1.1%
to 6.6% and 0.3% to 1.7%, respectively. The related chemical values are
the average of the blindduplicates determined on a LECO CNS-2000 car-
bon, nitrogen and sulphur analyzer [12]. The 141 grass NIR spectra are
divided into 71 calibration samples, 35 validation samples and 35 pre-
diction samples based on the SPXY algorithm.

Data set 3 consists of 32 marzipan FTIR spectra with traditional
moisture and sugar contents ranging from 7 to 19%, and 33 to 68%, re-
spectively. The spectra in the region 6500–650 cm−1 have been
recorded with Perkin Elmer System 2000, equipped with the horizontal
ATR sampling accessory (ZnSe cell) [12,15]. The 32 marzipan IR spectra
are divided into 24 calibration samples and 8 prediction samples.

Data set 4 consists of NIR transmittance spectra of meat samples
[16]. The spectra have been recorded on a Tecator Infratec Food and
Feed Analyzer working in the wavelength range 850–1050 nm. For
eachmeat sample, the data consists of a 100 channel spectrumof absor-
bances and the contents of moisture (water), fat and protein. The three
contents, measured in percent, are determined by analytic chemistry.
The data contain 129 calibration samples, 43 validation samples and
43 prediction samples. The spectra are normalized according to the
standard normal variate (SNV) method.

3.2. Methods

The proposed SVRSS algorithm is compared with SVR, PLS, power
PLS (PPLS) [17], Gaussian process regression (GPR) [18,19] and extreme
learningmachine (ELM) [20,10]. PPLS improves PLS by taking powers of
correlations and standard deviations in computing the PLS loading
weights, which adds flexibility to themodeling and provides better pre-
dictions [17]. A Gaussian process is a collection of random variables, any
finite number of which has a joint Gaussian distribution [18]. In GPR, as-
sume that the latent function is a Gaussian process, based on the Bayes-
ian inference, by conditioning the joint Gaussian prior distribution on
the observations, the prediction function values corresponding to test
inputs can be sampled from the joint posterior distribution [18]. GPR
has exhibited good performance on spectroscopic data as its flexibility
in the parameterization of covariance function [19]. ELM is a new learn-
ing algorithm for the single hidden layer feedforward neural networks.
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