
Statistical process monitoring based on a multi-manifold
projection algorithm

Chudong Tong, Xuefeng Yan ⁎
Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China

a b s t r a c ta r t i c l e i n f o

Article history:
Received 6 April 2013
Received in revised form 28 August 2013
Accepted 15 September 2013
Available online 20 September 2013

Keywords:
Process monitoring
Manifold learning
Feature extraction
Principal component analysis

Considering that the global and local structures of process data would probably be changed in some abnormal
states, a multi-manifold projection (MMP) algorithm for process monitoring and fault diagnosis is proposed
under the graph embedded learning framework. To exploit the underlying geometrical structure that contains
both global and local information of sampled data, the global graph and local graph are designed to characterize
the global and local structures, respectively. A unified optimization framework, i.e. global graph maximum
and local graph minimum, is then constructed to extract meaningful low-dimensional representations for
high-dimensional process data. In the proposed MMP, the neighborhood embedding is used in both global and
local graphs and the extracted features are faithful representations of the original data. The feasibility and validity
of the MMP-based process monitoring scheme are investigated through two case studies: a simple simulation
process and the Tennessee Eastman process. The experimental results demonstrate that the whole performance
of MMP is better than those of some traditional preserving global or local or global and local feature methods.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The increasing demands for production safety and quality stabiliza-
tion of chemical plants continue to drawattention to research in process
monitoring. Notable advancement of computing and information
technology over the past decades has led to wide application of distrib-
uted control system, and thus a large number of data are stored for
the chemical processes, which is the solid foundation of multivariate
statistical process monitoring (MSPM). Principal component analysis
(PCA) and partial least squares (PLS) are two major MSPM methods
and have been actively investigated [1–3]. Both PCA and PLS project
the highly correlated and noisy data onto a low-dimensional subspace
that best characterizes the variances of the original data space. In
other words, the global structure of dataset is preserved. Meanwhile,
several extensions of PCA and PLS have been extensively reported
in the literature, each of which is characterized by focusing on specific
process aspects in order to get bettermonitoring performance. Dynamic
PCA and PLS use a time lag shift method to include time-variant proper-
ty in dynamic processes [4,5]. Lee et al. proposed a nonlinear process
monitoring scheme based on kernel principal component analysis
(KPCA) and achieved certain success [6]. Besides, adaptive techniques
are developed recently to update the model consistently in order
to monitor the process with changing conditions [7,8]. Recently, an

important complementary statistical process monitoring scheme based
on independent component analysis (ICA) has been proposed for non-
Gaussian process monitoring and fault diagnosis [9,10]. ICA seeks to
decompose the original dataset into linear combinations of statistically
independent components and to deal with higher-order statistics.
Ge and Song proposed a unified framework for MSPM based on inde-
pendent component analysis–principal component analysis (ICA–PCA)
[11]. ICA–PCA functions very well since it combines the advantages of
both PCA and ICA. Generally, the essence of those methods is to conduct
dimensionality reduction and find a reduced space where the feature
of the original data can be faithfully represented. Therefore, different
dimensionality reduction techniques identify different features of the
original dataset, based on which the monitoring performance would
also be affected differently.

It is well known that PCA can easily handle high-dimensional, noisy,
and highly correlated data generated from chemical processes. Howev-
er, it is worthwhile to stress that the PCA model only considers the
global structure, and the detailed local structure feature is ignored
[12–15]. In the absence of inner data structure analysis, only limited
information can be extracted from process dataset. Recently, a new
dimensionality reduction technique known as manifold learning has
been gaining much attention for preserving local structure in pattern
recognition area. Several algorithms focused on local structure preserv-
ing, such as locally linear embedding (LLE) [13], Laplacian eigenmaps
(LE) [14], and locality preserving projections (LPP) [15], have been
proposed to exploit the underlying geometrical manifold of dataset.
Experiments have shown that these methods can find perceptually
meaningful embedding for artificial and real-world datasets [16]. In
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contrast to other manifold learning algorithms, LPP can possess a
remarkable advantage that it can generate an explicit map, which is
linear and can be easily obtained like PCA. More recently, some exten-
sions of the LPP algorithm were also proposed for pattern recognition
to overcome certain limitations of the original LPP and achieved better
recognition performance [17–19]. The basic idea of LPP is to find an
optimal projection such that the local neighborhood structure can be
preserved in a low-dimensional space [15]. LPP inherits local structure
preserving characteristic and has been successfully applied to fault
detection of batch process and nonlinear process [20,21]. However,
the dimension reduction performance of LPP could be degraded for
losing some important information existing in global structure of
given observations [22].

In general, either the global structure or the local structure of normal
dataset is changed after an abnormal event occurs. Therefore, the global
and local structures are crucial for process monitoring since the global
structure defines the outer shape of the process dataset and the local
structure presents inner organization. A natural idea is to combine
the two phases together in order to improve the fault detection
performance. Fortunately, Zhang et al. proposed a global–local structure
analysis (GLSA) model for fault detection and it outperforms PCA and
LPP-based monitoring methods [22]. In addition, Yu proposed a similar
monitoring scheme based on local and global PCA (LGPCA)models [23]
afterward. As a compromise, GLSA and LGPCA preserve both global and
local structures through a simple combination of PCA and LPP. Themain
difference of these two methods locates in the way they integrate cost
functions of PCA and LPP.

Motivated by the neighborhood embedding ability ofmanifold learn-
ing, a novel dimensionality reduction algorithm, called multi-manifold
projection (MMP) is proposed in the current work. MMP aims to find a
low-dimensional representationwhich can optimally preserve the global
structure and the local structure, simultaneously. The basis of MMP is
that the neighborhood information is embedded in both global and
local graphs, which is partially ignored by GLSA and LGPCA. The feasibil-
ity and validity ofMMP-based processmonitoring scheme are illustrated
through two case studies: a simple numerical simulation and the
Tennessee Eastman process (TEP), and the experimental results
demonstrate that the MMP-based method outperforms PCA-based
and LPP-based monitoring methods and gives better monitoring
performance than that of GLSA and LGPCA.

The remainder of this paper is organized as follows. Firstly,
MMP algorithm derivation is presented in Section 2. Section 3
provides the algorithm analysis and the MMP-based process mon-
itoring scheme. Two simulated processes are then used to illus-
trate the effectiveness of the proposed method in Section 4.
Finally, conclusions and extensive discussions are given at the
end of the article.

2. Algorithm formulation

Denote the dataset as X = [x1, x2, ⋯, xn]T, xi ∈ Rm. The problem of
dimensionality reduction is to find a projection P = [p1,p2, ⋯,pd]
which maps X to a low-dimensional sample set Y = [y1, y2, ⋯, yn],
yi ∈ Rd, d ≪ m, such that the original data is faithfully represented.

2.1. PCA and LPP

The objective of PCA is to find a projection axis p, such that the
projected data variance is maximal, which is given as follows:

JPCA ¼ max
Xn
i¼1

pT xi−xð Þ xi−xð ÞTp ð1Þ

where x ¼ 1=nð Þ∑xi . The low-dimensional sample points yi = pTxi
have the same directions of maximal variance with the original dataset

X. PCA considers only the outer shape of the given data but lacks the
ability to extract the local representations. Without considering the
local relationship between all pairs of data points, PCA destroys the
intrinsic geometrical structure of the dataset.

Inmany real-world industrial processes, the sampled dataset is often
with complicated distributions, and thus the local structure preserving
is very important. Fortunately, LPPwas proposed to tackle this problem,
and the following objective function is used [15]:

JLPP ¼ min
Xn
i; j¼1

pT xi−x j

� �
Wij xi−x j

� �T
p ð2Þ

where W is a n × n an adjacency matrix with elements calculated by
[13,15]:

Wij ¼
exp − xi−xj

��� ���2=c
� �

if xi∈N xi; xj

� �

0 otherwise

8>><
>>:

ð3Þ

where N(xi,xj) denotes that xi is among k nearest neighbors of xj or xj is
among k nearest neighbors of xi, and c is a parameter for adjustingWij.
The value of Wij represents the neighborhood relationship between xi
and xj. The projection axis p minimizing the objective function of LPP
can preserve the local information of the dataset X. However, without
respect to the faraway data points that represent outer shape in the
space X, LPP may lose the variance information and the outer shape of
the dataset may be destroyed.

2.2. Multi-manifold projection (MMP)

In order to overcome the shortcomings mentioned above, the
neighborhood structure of the data is embedded in both local and
global information. By taking the advantages of neighborhood
embedding ability of manifold, a unified dual optimization function
is constructed for the proposed MMP algorithm. To this end, two
types of graphs in MMP: local graph and global graph are defined
to simplify statements, respectively.

2.2.1. Local graph minimum
For local graph, an adjacencymatrixW is first calculated. The locality

preserving criterion is given as follows [15]:

J pð Þ ¼ min
Xn
i; j¼1

pT xi−x j

� �
Wij xi−x j

� �T
p

¼ minpTXT D−Wð ÞXp
¼ minpTXTLXpT ¼ minpTL

0
pT

ð4Þ

where L = D − W is known as Laplacian matrix in manifold learning,
L' = XTLX is defined as local graph matrix, D is a diagonal matrix
with diagonal elements being the column (or row) sum of W,
i.e. Dii = ∑ jWij, and Dii represents a point's nearby density.

2.2.2. Global graph maximum
For global graph, it would be necessary to embed the neighborhood

information to obtain an optimal outer shape manifold structure. Here,
the local mean center of each sample xi is considered, which can
be more respective than the original mean center x . As mentioned
previously, the diagonal elements in D reveal the nearby density of
corresponding points. According to W, the local mean vector of xi is
given by:

xi ¼
1
ni

X
x j∈N xi ;x jð Þ x j; i ¼ 1; 2; ⋯;n ð5Þ
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