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In viscose production, it is important to monitor three process parameters as part of the spin bath in order to
assure a high quality of the final product: the concentrations of H2SO4, Na2SO4 and ZnSO4. NIR-spectroscopy is
a fast analytical method applicable to conditions of industrial production and is capable of determining those
concentrations. The collective composition of the spin bath varies in the industrial process, which implies
changes in the matrix of the aforementioned analytes. Thus, conventional static chemometric models, which
are trained based on collected calibration spectra from Fourier transform near infrared (FT-NIR) measurements,
show a quite imprecise behavior when predicting the concentrations of new on-line data. In this paper, we are
presenting a methodology which is able to cope with on-line self-calibration and -adaptation demands in
order to compensate high system dynamics, reflected in conceptual changes in the mappings between NIR
spectra and target concentrations. The methodology includes intelligent strategies for actively selecting those
samples which should be accumulated into and excluded from the current data window in order to optimize
the generalization performance of calibrationmodels (thus termed as incremental and decremental active learning
stages) while keeping the number of update cycles (and thus required target measurements) as low as possible.
This follows the company requirements in terms of necessary cost reduction. Experiments on real-world data
streams from viscose production process show that the new self-calibration methods are able to significantly
reduce the number of update cycles while still keeping the predictive quality of the calibration models high
(below5% errors) for H2SO4 andNa2SO4. Incremental active learning is able to smoothen and improve the overall
quality of the predictions, while decremental active learning achieves a lower number of medium to large
prediction errors.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation and problem statement

The viscose process is of economic significance and production has
been growing rapidly for the past two decades. In the viscose produc-
tion there is a demand for measuring the most important process
parameters, namely the concentrations of H2SO4, Na2SO4 and ZnSO4.
The acid and the two salts govern the precipitation and agglomeration
of the cellulose from viscose solution and the formation of the viscose

fiber. The concentration of those components has major influence on
the fiber properties. Hence, the accurate knowledge and control of the
concentration are a prerequisite for the production of high-quality
viscose fibers in the industrial processes. The conventional method to
determine those concentrations is titration [1], which is quite time
consuming, although it can be implemented in an automated fashion,
i.e. automated titration draws a liquid sample from the process line
and accomplishes an analysis on a regular basis. This is the case in the
process under consideration in this work. The automated titration de-
livers an analytical value each 8th minute, whereas NIR-spectroscopy
is capable to deliver a spectrum and consequently an analytical result
each 10th second. The spin bath in the spinning trough is recirculated
approximately each 20 min, compared to which the analysis time of
the conventional titromat is quite long, what results in long reaction
times to adjust the spin bath composition. This reaction time for adjust-
ment could be dramatically shortened by the fast analysis achievable by
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NIR-spectroscopy.With the usage of chemometric models based on NIR
spectra, a more frequent supervision of the process is possible. Further-
more, the automated titration also entails considerable costs for
chemicals and maintenance, thus the reduction of its usage by auto-
matic quantification based on chemometric models is highly desired.
A complete substitution of the automated titration would be the ideal
situation, however due to the high system dynamics of the spin bath,
self-adaptation of the chemometric models is expected to be required
from time to time (which could be verified in a former publication
[2]). This is mainly because operatingmodes and states of the industrial
processes might vary according to different products (i.e. fiber types) or
rawmaterials processed, hence also the overall composition of the spin
bath in detail might vary. E.g. the spin bath might contain additives or
degradation products of the cellulose to a varying content [3], what is
also conditioned by the dynamics of the industrial continuous operation
mode and the recirculation of process media. These fluctuations in spin
bath composition represent changes of thematrix of the analytes H2SO4,
Na2SO4 and ZnSO4. For NIR-spectroscopy these fluctuations might
represent a problem, as a NIR-spectrum contains comprehensive infor-
mation about the chemical composition, and specific analytical informa-
tion is extracted by chemometric models. Due to the high expense for
performing titrations, a requirement of the company is to reduce mea-
surements and thus the update cycles. Ideally, the goal would be only
to measure and update the model 3–4 times a day, i.e. each 6th to 8th
hour instead of each 8th minute. Summarizing, we should achieve a
double requirement consisting of capturing the high dynamics of the
system, as well as reducing costs by decreasing the frequency of the
titrations.

1.2. State-of-the-art and open problems

Ideally, when it comes to cost reduction, the best optionwould be to
apply batch models. These are usually trained once based on off-line
calibration samples, which are supposed to be representative of the
whole process under study, and then applied to new on-line data for
quantification and prediction of substances. Unfortunately, the dynam-
ics of these matrix effects abandons the application of standard chemo-
metric modeling tools, as e.g. can be found in [4,5] or [6] and have been
applied to viscose production in the past [7,8]. In fact, in [2], it could be
verified that, when using conventional modeling methods such as PLS
[9], iPLS [10], PCR [11], LWR [12] and others (most of them used as
implementations in the PLS-Toolbox1) in the viscose production process
under our study, the model errors start to significantly drift over time.
For the first few hundred of new on-line samples, the performance
was similar to the one obtained on off-line training samples, but the
more deteriorated themore time passed by (→ drift effect). Thus, focus-
ing on capturing the dynamics of the process, in [2] a new concept was
developed, termed as evolving chemometric models (eChemo) which
possess the ability to automatically self-adapt and re-calibrate based
on newly recorded on-lineNIR spectra sampleswithminimal resources.
The main characteristics of eChemo were:

• It required an initial model (a non-linear Takagi-Sugeno fuzzy system
[13]) from some pre-recorded and off-line stored calibration samples.
The parameters of the initial models (especially structure, i.e. number
of rules, and input dimensionality) were optimized using a best-
parameter grid search scenario coupled with cross-validation and
specific model selection scheme, see [14].

• It was able to adapt the final selected model with new incoming on-
line samples in a single-pass incremental manner, based on target
concentrations measured by the automated titration. An interesting
finding was that the model updates require evolution (and back-

pruning) of structural components on demand [15] as well as forget-
ting of older samples [16,17] in order to increase both, compactness
[18] and flexibility (condemning the usage of recursive linear models
as used before in [19] and [20]). This assured that the model was al-
ways freshly up-to-date during the on-line process and a fast learning
could be achieved.

• It performed an update with each new incoming sample (approx.
each 8th minute), thus requiring permanent values from the auto-
mated titration. The quality of the predictions remained on a very
high level (max. 3% relative error) during the whole process, thus
prevented any drift effects. Regarding cost reduction, as can be seen
in [2], when testing eChemo on updating each 8th or each 16th sample
(far even from the company requirements of adapting 3–4 times a
day, i.e. each 60th–45th sample) the performance loss is huge.

Therefore, neither the State-of-the-art batch models nor eChemo
could find an acceptable trade-off between accuracy and cost. The for-
mer because of low accuracy due to the drift effect, and the latter be-
cause of an unacceptably high cost within a dynamically changing
environment. Thus, new approaches should be investigated.

1.3. Our approach

In this paper, we demonstrate a different approach which is based
on self-adaptive calibration models within a sliding window concept
(Section 3.1), which puts more flexibility in the incremental learning
phase and especially also in the forgetting process of older samples.
We include more control on the issue which samples to forget than in
the usual forgetting strategies, only based on the age concept (timeline).
This is achieved by a decremental active learning stage (Section 4.2)
which selects that sample from the window with lowest information
gain in terms of diversity and model quality. Furthermore, the sliding
window concept allows the introduction of more flexibility in terms of
self-adjusting learning parameters and self-optimizing input dimen-
sionality for the self-adaptive calibrationmodels, thus allowing the inte-
gration of an input structure change, which is not possible in batch
modeling nor in eChemo (in which the input structure is optimized in
an initial off-line calibration phase, and then is kept fixed for the on-
line phase). Finally, in order to put control on the samples requested
for the self-adaptive calibration models and to avoid unnecessary up-
dates not bringing any performance (e.g. samples already included in
themodel updates), we pursue a strategywhichwe term as incremental
active learning stage. Therefore, we do not use each equidistant sample
to be included in the sliding window, but we actively select samples
with the highest information gain compared to the samples already
present in the current window, i.e. samples which are expected to be
able to generalize the chemometric models and thus to improve their
predictive quality on newquery pointsmost. The number of actively se-
lected samples has to be constrained in order to meet the requirements
by the company, namely to record maximally 3 to 4 target values per
day (thus allowing maximal 3 to 4 updates of the sliding window per
day). As model architectures, we will exploit conventional PLS method
(from the PLS-toolbox) and fuzzy systemswith the batchmodel variant
FLEXFIS as learning engine (as used in [2]), but employing latent vari-
ables from PLS as inputs. Thus, it is termed as FLEXFIS + PLS which
can be seen as a sort of non-linear version of PLS; this will provide us
with the informationwhether non-linearity in the self-adaptive calibra-
tion models helps to improve the performance.

The results include a comparison of the new sliding window ap-
proach with the original eChemo models [2], with different variants for
deleting samples from the current windows (see Section 6), namely
oldest versus random versus our enhanced selection strategy within
the scope of decremental active learning aswell aswith different variants
for accumulating samples in the window, namely blind static equidis-
tant (default sliding window approach) versus the adaptation of an ap-
proach in [21] (based on Euclidean distances) versus our enhanced1 http://www.eigenvector.com/software/pls_toolbox.htm.
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