
Fault detection and diagnosis for missing data systems with a three
time-slice dynamic Bayesian network approach

Zhengdao Zhang ⁎, Feilong Dong
Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China

a b s t r a c ta r t i c l e i n f o

Article history:
Received 9 April 2014
Received in revised form 1 July 2014
Accepted 9 July 2014
Available online 17 July 2014

Keywords:
Dynamic Bayesian network
Mixture Gaussian output
Fault detection and identification
Missing data
EM algorithm
Non-imputation

A multi-time-slice dynamic Bayesian network with a mixture of the Gaussian output (MT-DBNMG)
based data-driven fault identification method is proposed to handle the missing data samples and the
non-Gaussian process data. First, via introducing more time slices, a new dynamic Bayesian network
structure with multi-time-slice is constructed which can describe the dependence between the current
state and historic states. Second, a parameter learning strategy based on expectation maximization algo-
rithm is deduced, from the complete historical data with the non-Gaussianity, to train the parameters of
MT-DBNMG. Subsequently, for the missing measurements, an online non-imputation inference method
for MT-DBNMG is proposed to conduct fault detection and identification. The effectiveness of the pro-
posed approach is demonstrated by the continuous stirred tank reactor system and the Tennessee
Eastman chemical process. The results show that the presented approach can accurately detect abnormal
events, identify the fault, and is also robust to unknown noise.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the development of the industrial manufacturing alone
with the advanced automation and control system, the complexity
of systems is increased. Thus, process monitoring and fault detection
are very important in modern industry. Traditional fault detection
and diagnosis methods proposed in the literature can be classified as
quantitative model-based approaches [1,2], qualitative knowledge-
based approaches [3] and process data-driven approaches. Compar-
ing with other methods, data-driven methods, especially multivari-
ate statistical process monitoring methods, are developed and have
attracted growing attention in the field [4,5]. Although the data-
driven methods will have difficulty in diagnosing on-line faulty
data with a much different magnitude or new faulty data, it is
worth to implement them due to their well-known excellent prop-
erties which include no requirement of the in-depth process knowl-
edge or the first principle of controlled systems, easy to collect mass
data, and easy to apply to real processes of a rather large scale com-
pared to other methods based on systems theory or rigorous process
models.

Among the data-driven methods, principal component analysis
(PCA) and partial least squares (PLSs) are the two most well-known
techniques, and many extensions are further developed based on
them (see [4,6,7] and references therein). However, the PCA/PLS
methods depend on the assumption that the process data follow an ap-
proximate multivariate Gaussian distribution, which may not be unsat-
isfied in real industry such that the traditional PCA/PLS monitoring
approaches become inappropriate [8]. The Gaussian mixture model
(GMM) based monitoring approach can nicely handle the multi-
Gaussianity which is approximated by multi-Gaussian distributions
[8,9]. Compared with neural networks and other methods to handle
the non-Gaussianity, the GMM only uses the historical data of pro-
cess and avoids the performance degradation caused by the initial
parameter selection. Moreover, the GMM can deal with the partly
missing measurements. Therefore, the GMM algorithm has been
introduced to automatically detect, isolate, and even forecast the
faults [10,11].

From the perspective of statistical inference, fault detection and
identification can be treated as an uncertain evidence inference prob-
lem, and Bayesianmethods are the best tools to infer and formulate un-
certainty of evidence [12,13]. Among Bayesianmethods, static Bayesian
network (BN) is suitable for dealingwith conditional-dependent uncer-
tain modeling and inference [14], and has been applied to different
areas including fault detection and diagnosis (FDD) [6,15–19].
Moreover, BN can be combined with GMM to deal with the non-
Gaussianity problem [20–22]. Nevertheless, since static BN does not
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consider the temporal relationship among states of dynamic system
[23], it is not suitable for expressing and dealing with the sequence re-
lationship between samples in the output measurement time series of
industrial process. As an extension of static BN, dynamic Bayesian net-
work (DBN) combines static network with temporal information, and
forms a probability model which can deal with timing sequence data
[24]. Even if the study of the dynamic Bayesian network is not very ma-
ture, it has been applied in FDD [25–30]. Yu et al. developed a novel DBN
based networked process monitoring approach which can accurately
detect abnormal events, identify the fault propagation pathways, and
diagnose the root cause variables [31]. At present, the major limitations
of DBN based FDD methods lie in the fact that the network structure is
designed depending on the prior process knowledge and process flow
diagram.

Although data-driven approaches have beenwidely applied for FDD,
the missing data output problem is the major challenge of these
methods. Caused by a suddenmechanical breakdown, hardware sensor
failure or data acquisition system malfunction, etc., missing data or ir-
regularly sampled data is a common phenomenon in industrial practice
[32,33]. The data losses and packet dropouts in communication net-
works are the increasing common sources for this missing data prob-
lem. However, the process monitoring and fault detection techniques
in the presence of missing observation have not been well studied.
Most of the existing data-driven methods, including neural networks,
k-nearest neighbors and decision trees, are designed for well-
conditioned data sets and cannot treat the incomplete data. Therefore,
these methods will result in detection delays or failures in FDDwith in-
complete data.

In order to meet the requirements of the real-time fault detection
and diagnosis, the problem of missing data should be considered, in
other words, we must use the partly observed data to detect and diag-
nose fault if the data are missing at a certain moment. To achieve this
end, some common data imputation approaches are used [13], such as
mean substitution, regression imputation, multiple imputation, nearest
neighborhood shift, support vector machine (SVM) and expectation

maximization, to make the missing samples complete [34,35], then
the complete estimated data is used to detect and diagnose fault. How-
ever, the variances of the datamay be considerably changedwith impu-
tation, which was pointed out by Khatibisepehr et al. [13]. Moreover,
there are three kinds of missing data mechanisms, i.e. missing at ran-
dom, missing completely at random and not missing at random [35].
Unfortunately, neither a single imputation approach is suitable for all
of themissing datamechanism assumptions. On the other hand, the im-
puted value is an approximation of the real value and the imputation
error increaseswith the increase ofmissing rate. Therefore, the imputed
value cannot take the place of the original one for fault detection and
identification, because a bias repaired value may lead to a false alarm
or missing alarm. Also, there were only limited literatures reported on
the use of Bayesian networks for process fault detection and diagnosis
with missing data. Unlike those heuristic schemes which deal with spe-
cial problems, the concept of correntropy has been applied to develop
more general methods based on existing models without resort to un-
necessary efforts for outlier detection [37]. A similar idea also can be
found in [38]. Therefore, we also focus on direct fault detection and di-
agnosis without imputation of missing data.

This paper proposes a multi-time-slice dynamic Bayesian network
with mixture of Gaussian output (MT-DBNMG), and then, achieves
fault detection and identification with the partially observed data for
those systems that have the missing data output problem and the
non-Gaussianity. The research of this paper is the expansion of our pro-
phase research work [7,36]. In these literature, the two-time-slice dy-
namic Bayesian network with a mixture of Gaussian output (2T-
DBNMG) is proposed to solve the problem of incomplete data and
non-Gaussianity in processes. But it is not effective to detect incipient
fault and has a large delay alarm rate for this incipient fault detection.
Inspired by the high-order Markov model, we introduce more time
slices into DBN, which can relate the current state with more historic
data. The proposed algorithm can be divided into two steps. First,
using the complete historical data, the parameter learning algorithm
of MT-DBNMG is deduced based on expectation maximization method.
Second, based on the trainedMT-DBNMG, the inference algorithm is de-
veloped with partly missing data to accomplish the fault detection and
identification. At last, the proposed approach is applied to monitor the
continuous stirred-tank reactor (CSTR) and the Tennessee Eastman
(TE) chemical process in this study and the presented method is dem-
onstrated to be effective in monitoring and diagnosing for these two
benchmark processes.

The remainder of this paper is organized as follows. In Section 1,
after a brief introduction of the DBNMG model and missing data pro-
cessing, the parameter learning algorithm of MT-DBNMG and the infer-
ence algorithm are deduced in detail. Then, Section 2 introduces the
process of fault detection and identification based on the proposed
MT-DBNMG. The presented method is applied to the CSTR and the TE
process in Section 3. Finally, the conclusions are summarized in
Section 4.

Nomenclature

Ct state node
Mt mixture Gaussian node
P(C0) initial state probability distribution
P(Yt|Ct) observation variable probability distribution
P(Ct|Ct − 1) state transition probability distribution
yt,u missing part of yt
CAf feed concentration
Tc coolant inlet temperature
q reactor feed flow rate
ρ density
−ΔH heat of reaction
ϕc(t) deactivation coefficient
Yt observed node
t time instant
ya,t ath element of yt
yt measurement vector at time t
yt,o observable part of yt
CA effluent concentration
T reactor temperature
Tf feed temperature
V reactor volume
k0 pre-exponential factor
Cp,Cpc heat capacity
ϕh(t) fouling coefficient

Fig. 1. The structure of the 2T-DBNMGmodels.
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