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A general model is proposed for the explanation of several linear methods used for quantification. A first projec-
tion approach concerns pretreatments and calibrations. It consists of an oblique projection of the spectral data
onto a subspace containing useful information for calibrations or detrimental information for pretreatments.
Corrected spectra and scores are obtained for pretreatments and calibrations, respectively. A second projection
approach concerns only calibrations. The regression vector is deduced after an orthogonal projection of the ref-
erence values onto the scores previously obtained. Several pretreatments, and direct and indirect (inverse) cali-
brations also called regressions are reviewed according to this model. The methods described are focused on
spectroscopic applications. Some are very specific to spectroscopy; however, most of them also can be applied
in other situations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A calibration is an operation that…in a first step, establishes a relation
between the quantity values…provided by measurement standards and
corresponding indications…and, in a second step, uses this information to
establish a relation for obtaining a measurement result from an indication
[1]. The metrological terms number of measurements, quantity values
and indications are hereafter called number of observations, quantities
of interest and variables respectively, terms that are more common in
the literature. The quantities of interest correspond to the measured
(y) or estimated ŷð Þ values for a set of N observations of a compound
of interest Y (e.g. sugar). Let X be the set of values of Q variables for
the same observations. Then a calibration is a function f which yields ŷ
fromX: ŷ ¼ f Xð Þ. Finding f is a real issue. Countless solutions have been
proposed; we do not intend to cover all of them. Non-linear methods,
such as those based on artificial neural networks, are beyond the
scope of this review. This paper is restricted to linear calibration
methods. Still, there is a need for classification.

Three families of linear methods have been proposed: indirect
calibrations (also called inverse calibrations or regressions), direct

calibrations, and pretreatments [2]. For an observation i, a set of Qmea-
surements is represented by the vector xi. Linear calibrations provide an
estimate ŷi of the quantity of interest by determining a vector of regres-
sion coefficients b of dimensions (Q × 1) such that: ŷi ¼ x0ib with
the constraint that b minimizes jyi−ŷij. Indirect calibrations build b
with a calibration dataset, while direct calibrations build b with com-
ponent responses (often spectra). On the other hand, pretreatments
yield a corrected vector xi,corr. Separate reviews have shown links be-
tween the methods. Among the regressions, multiple linear regression
(MLR), principal regression (PCR) and projection to latent structures re-
gression (PLSR) have been compared according to the way in which
scores and loadings are produced [2], their relevant components [3],
the H-principle [4,5], the geometry [6], and tuning parameters [7]. Indi-
rect methods have also been compared, e.g. [2,8,9] or with PLSR [10]. In
the discussion that follows, pretreatments are considered separately
from calibrations [11] with two exceptions: orthogonal signal correc-
tion (OSC), a preprocessing method whose concept originates from
PLSR [12] and orthogonal subspace projection (OSP) [13], another
preprocessing method which also involves a direct calibration meth-
od [14]. Thus, there are links between pretreatments, direct and inverse
calibrations. The question is then: what is the general framework
that underlies all these linear methods? A term commonly used is
projections.

Projections applied to the variable space (see the definition given
hereafter) reveal a general framework that unifies several pretreatment
and calibration methods. Projections can be introduced by their linear
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algebra properties, it is the aim of the next paragraph. Projections can
also be introduced by their geometrical properties, as in a tutorial re-
cently submitted [15]. Thus to begin with and to provide a quick view
of their interest, orthogonal projections are illustrated with a short
example based on spectroscopy. In the Chimiometrie 2007 Challenge,
twelve spectra were acquired for a sample # 1 with different ex-
perimental conditions (temperature, grinding, and moisture). The
operation was repeated for a sample # 2. The spectra obtained for sam-
ple # 1 are all different, due to the experimental conditions (Fig. 1(a)).
Differences are also observed for sample # 2; removing them is
the issue addressed by pretreatments. One possibility is to center
the set of spectra # 1 in order to keep only the spectral information
due to the experimental conditions (Fig. 1(b)). This centered set of spec-
tra is used to build an orthogonal projector which is applied to the sam-
ple # 2 spectra, yielding the spectra in Fig. 1(c). Just one curve is visible.
It means that the twelve spectra overlap almost perfectly. One can
notice that the result is a reduction of the differences due to the exper-
imental conditions, which is expected. But the original shape of the
spectra has also been lost.

This paper beginswith a brief overview of linear algebra. Then a gen-
eral model is described. The following sections review direct calibra-
tions, indirect calibrations and related pretreatment methods in
accordance with the proposed framework. Calibrations are considered
for the prediction of a single quantity of interest. Each method is briefly
described with a focus on its geometry; more information is available in
the original papers. A section is also dedicated to methods which are
closely related, yet not part of the proposed framework. General proper-
ties of the methods are then discussed. Along with a classification of
methods, this discussion develops the notion of useful and detrimental
information and how the different methods are able to identify these
kinds of information, then process them.

2. A brief overview of linear algebra

Concepts of orthogonal and oblique projections, spaces and metrics
are used throughout the paper. The main acronyms are explained
in Table 1. The notation used throughout the paper is conventional. Sca-
lars are rendered in normal uppercase font (with italic lowercase for in-
dices), vectors are rendered in bold lowercase font, and matrices are
rendered in bold uppercase font. Subspaces are represented by the
script fonts E and R. The transposed form of any vector u and matrix
U are u′ and U′, respectively. The inverse of a square matrix U is noted
U−1. The Moore–Penrose pseudo-inverse of any matrix U is U+. Finally,
the same symbol can be used in different methods because the value is
different, but themeaning is the same. This is especially the case for the
matrices P,M andDwhich represent loadings, a metric, and a matrix of
detrimental information respectively.Whenmore precision is needed, a
subscript is used: e.g. PPLSR.

• Vectorial spaces and subspaces, bases:
The vector xi is defined in the vector spaceℝQ, also called the variable
space. Subspaces of ℝQ are defined by a basis. For example, the set of
vectors {p1, p2, … pA}, the column vectors of P, defines a basis of a
unique subspaceR(P) [16]. However, different bases, yielding differ-
ent matrices P, may span the same subspace. The row space and col-
umn spaces of X are R(X′) and R(X), subspaces of ℝQ and ℝN,
respectively.

• Metric: A metric M for vector space ℝQ is a symmetrical matrix of
dimension (Q × Q) with specific properties [17]. M is used for the
calculation of the generalized inner product between vectors u
and v: b u, v N = u′Mv. Metrics are often set to the identity matrix,
but sometimes they are not, e.g. for calculating aMahalanobis distance.

• Orthogonal and oblique projections:
A matrixΨ of dimensions (Q × Q) is a projector ifΨ2 =Ψ. Projectors
are built using twomatrices associated with the range-space and null-
space [16], or alternatively with a metric and a basis [17,18]. Only the

second of these two approaches is considered here. The oblique pro-
jector Ψ onto R(P) using the metric M, also called the M-projector
ontoR(P), is:

Ψ ¼ MP P0MP
� �−1P0

: ð1Þ

The M-antiprojector to R(P) is: Ψ⊥ = IQ − Ψ. These projectors
have been designed to be applied to the right of matrices or vectors.
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Fig. 1. An orthogonal projection illustrated with near infrared spectra of wheat flour.
(a) Twelve spectra of sample # 1 acquired at 3 temperatures, 2 moistures and 2 grindings.
(b) Previous spectra after centering. (c) The twelve spectra of sample # 2, after an orthog-
onal projection to all but one of the centered spectra of sample # 1.

49J.-C. Boulet et al. / Chemometrics and Intelligent Laboratory Systems 138 (2014) 48–56



Download English Version:

https://daneshyari.com/en/article/1180732

Download Persian Version:

https://daneshyari.com/article/1180732

Daneshyari.com

https://daneshyari.com/en/article/1180732
https://daneshyari.com/article/1180732
https://daneshyari.com

