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In recent years, inference of gene regulatory networks has received ever increasing attention in the systems
biologyfield. In this paper, for thefirst time, a fractional gene regulatory algorithmby extended fractional Kalman
filter (EFKF) is proposed to estimate the hidden states as well as the unknown static parameters of the model,
which can provide insight into the underlying regulatory relations among genes in the biological system. In
the proposed method, gene regulatory networks are inferred via evolutionary modeling based on time-series
microarraymeasurements. The gene regulatory network is considered as a fractional orderdiscrete stochastic dy-
namic model that consists of the genemeasurement equation and the gene regulation equation. After specifying
themodel structure, we apply the EFKF algorithm for identifying both themodel parameters and the actual value
of gene expression levels. In this paper, the main advantages of using fractional order systems, increasing the
flexibility and improving the accuracy of the system state equation in EFKF are highlighted. The performance
of the EFKF algorithm is compared with EKF and other nonlinear algorithms in predicting the parameters of
gene regulatory networks from synthetic data and real biological data. Extensive computer simulations illustrate
that the proposed algorithm outperforms EKF and other methods, and therefore, it can serve as a natural frame-
work for inference gene regulatory networks with a nonlinear structure.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fractional calculus, which is first mentioned by Leibniz and
L'Hospital in 1695, has been studied by many mathematicians for a
long time. For more details, refer to the books by Oldham and Spanier
[1]. During the last 20 years, fractional calculus has started to enter in
more and more application fields, including physics, chemistry, mate-
rials science, viscoelasticity, electrical circuits, engineering and biology
[2–6]. Fractional order models are now being applied to a wide range
of problems in bioengineering [2].

Gene expression is the process of generating functional gene prod-
ucts, for example, mRNA and protein. Hence the level of gene function-
ality can be measured using microarrays or gene chips to produce gene
expression data [7]. Measuring the levels of gene expression in different
conditions is meaningful in medical diagnosis, treatment, and drug de-
sign [8]. Many gene expression experiments produce time-series data
with only a few time points owing to the high measurement costs.
Therefore, it becomes significant to predict the behavior of gene regula-
tory networks (GRNs) through modern computing technology. Recent-
ly, many algorithms and mathematical models were proposed to

predict gene regulatory networks from time-series data [9,10], such as
Boolean network [11], Dynamic Bayesian networks [12], neural net-
works [13], differential equations [14], state-space model [15], and sto-
chastic model [16].

It is well known that gene expression is a complex nonlinear dynam-
ic system. Parameter estimation in nonlinear dynamic systems is ex-
tremely important, but also extremely difficult. Some researchers use
the S-system model to perform analysis of genetic network [17,18]. It
has been successfully used in some biochemical networks, but encoun-
ters high-dimensionality problems when used to analyze large-scale
genetic networks.

A remarkable feature of time-series gene express data is that the
number of the time points is usuallymuch smaller than that of the num-
ber of genes. So one of themost significant challenges in GRNs is to build
a model that can analyze such a high-dimensional and short-length
time-series data. In general, gene expression systems are partially ob-
served. Therefore, a natural way to infer dynamic gene regulatory net-
works is to employ nonlinear state-space models that consist of two
types of equations: system equations and observation equations [19].
The well-known extended Kalman filter (EKF) has been widely used
in the state estimation of nonlinear dynamic systems from noisy mea-
surements. Wang [20]has applied EKF to model nonlinear dynamic
GRNs via short gene expression time series. The GRNs are considered
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as a nonlinear dynamic stochastic model that consists of the gene mea-
surement equation and the gene regulation equation. Sun [21]has pro-
posed EKF for estimation of parameters in nonlinear state-space
models of biochemical networks. He discussed in detail how to develop
a general framework formodeling biochemical networks andhow to es-
timate the parameters in the models. Qian [22]has presented inference
of noisy nonlinear differential equation models for GRNs using genetic
programming and Kalman filtering. These research works demonstrate
that EKF cannot only develop mathematical models but also estimate
their parameters in gene regulatory networks. However, the differential
order of the systemequation in EKF isfixed as an integerwhich limits its
applications and EKF only relies on the current state value. So we pro-
posed a fractional gene regulatory algorithm by fractional calculus.
The fractional calculus is a generalization of the traditional differential
calculus for a case when integrals and derivatives are in not only inte-
gers but also fractional order. It is well known that fractional differential
equations are useful because of their nonlocal character [23], i.e., the
next state of a system not only depends on its current state but also
on its historical states starting from the initial time. This is closer to
reality and is therefore themain reason that fractional differential equa-
tions have become more popular.

This paper assumes that the GRNs obey a nonlinear fractional differ-
ential equation with additive Gaussian white noise. The gene expres-
sions are assumed to evolve following a sigmoid squash function,
whereas a linear function is considered for the microarray data. After
specifying the model structure, we apply the extended fractional
Kalman filter (EFKF) [24] to estimate themodel parameters and hidden
states of the nonlinear model using time-series data. A synthetic data
and two realmicroarray time-series data from the yeast protein synthe-
sis and SOS DNA Repair network of Escherichia coli are used to test our
method. Result show that this method is capable of improving the pre-
diction accuracy of microarray time-series dataset. Our major contribu-
tions in this study can be summarized as follows. (1) An EFKF is firstly
presented to estimate thehidden states and parameters of the nonlinear
model in GRNs. (2) The performance of our algorithm is evaluated for
time-series data contrasting with the EKF and other nonlinear algo-
rithms. It is demonstrated that our method is more effective than previ-
ous methods.

This paper is organized as follows: Section 2 illustrates the frac-
tional gene regulatory algorithm by extended fractional Kalman fil-
ter and how to analyze the parameters for EFKF. Simulation results
are given in Section 3. The performance of EFKF method is compared
with EKF and other nonlinear algorithms. Section 4 contains some
concluding remarks.

2. Materials and methods

2.1. System model and problem statement

Let ℝ be the set of real numbers. The fractional order Grünwald–
Letnikov difference of a function x : ℝ → ℝ is given by the following
equation [24]:

!
γx kð Þ ¼ 1
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Xk
j¼0

−1ð Þ j γ
j

� �
x k− jð Þ; ð1Þ

where γ∈ℝ is a fractional order, and δ is a sampling time later equal to
1, k is the number of samples for which the derivative is calculated. The
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According to this definition, it is possible to obtain a discrete equiv-
alent of the derivative (when γ is positive), a discrete equivalent of
integration (when γ is negative).

Let n be the number of genes. We assume that the gene expres-
sion follows the fractional order discrete stochastic dynamical
system:

Δγx kþ 1ð Þ ¼ f x kð Þð Þ þω kð Þ;
x kþ 1ð Þ ¼ Δγx kþ 1ð Þ−

Xkþ1

j¼1

−1ð Þ jγ jð Þx kþ 1− jð Þ; k ¼ 1;2; ⋯;m;

y kð Þ ¼ h x kð Þð Þ þ ν kð Þ;
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where

γk ¼ diag
α1
k
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⋯ αn

k
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;

Δγx kþ 1ð Þ ¼
Δα1x1 kþ 1ð Þ

⋯
Δαn xn kþ 1ð Þ

24 35;
αi is the order of system equation with respect to the i-th gene, i =
1,2,⋯, n. m is the total number of data points, ω(k) and v(k) are as-
sumed to be zero-mean Gaussian white noise with covariance
Q(k)and R(k), respectively, i.e., ω(k) ∼ N(0, Q(k)), ν(k) ∼ N(0,
R(k)). f(⋅) : ℝn → ℝn and h(⋅) : ℝn → ℝn are some proper nonlinear
functions. The nonlinear function f(∙) and h(∙) can be linearized ac-
cording to the Taylor series expansion.

Setting f(x(k)) = [f1(x1(k)), f2(x2(k)), ⋯, fn(xn(k))]T. To capture the
gene interactions effectively, we assumed [25]

f i xð Þ ¼
Xn
j¼1

aijg j xð Þ; i ¼ 1;2; ⋯;n; ð4Þ

where A = (aij)n × n represents the nonlinear regulatory relationship
among genes; and the nonlinear function gj(∙) is given by

g j xð Þ ¼ 1
1þ exp −xð Þ ; x∈ℝn

: ð5Þ

A discrete linear Gaussian model for the microarray data is consid-
ered which can be expressed at the ith time instant as [20]

yi kð Þ ¼ xi kð Þ þ νi kð Þ; i ¼ 1;2; ⋯;n; k ¼ 1;2; ⋯;m; ð6Þ

where y(k) = [y1(k), y2(k), ⋯, yn(k)]T. That is, h ≡ I, which is the identity
matrix.

In ourmodel, the θ=[a11, a21, ⋯, an1, a12, a22, ⋯, an2, a1n, a2n, ⋯, ann] are
parameters to be identified. It is also worth pointing out that we can
identify the n state variables as well.

2.2. Extended fractional Kalman filter

The extended fractional Kalman filter (EFKF), which has been studied
in [24], is an important and fascinating algorithm in nonlinear theory
which is extended to fractional systems. We list this algorithm in the
following:

Theorem 2.1. [24]For the nonlinear fractional order stochastic discrete
state–space system given by Eq.(3), the extended fractional Kalman filter
(EFKF) is given by the following equations:

Δγex kþ 1ð Þ ¼ f x̂ kð Þð Þ; ð7Þ

ex kþ 1ð Þ ¼ Δγex kþ 1ð Þ−
Xkþ1

j¼0

−1ð Þ jγ jx̂ kþ 1− jð Þ; ð8Þ
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