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A hybridmodel (herein referred to as PLS-SLT) founded on partial least squares (PLS) and slice transform (SLT) is
proposed to model nonlinear chemical systems with a wide range of response variable. In themodeling process,
PLS predicted values of calibration set were taken as inputs for the subsequent SLT to further approximate to
observed values by a least square criterion. The estimated optimal piecewise linear mapping function was then
applied to test set to give the final prediction result. Theoretically, PLS-SLT can be proven to be equivalent to
the PLS-based piecewise linearmodel in the y-space. PLS-SLT is comparedwith PLS and other calibrationmodels
on two spectral datasets. TheWilcoxon signed rank test is used to statistically compare predictive performance of
two competing calibration models. Experimental results show that the performance of PLS-SLT is at least
statistically not worse than PLS and other models.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate calibration models are widely used to find the relation-
ship betweenX (predictor variables/spectral data) and y (response var-
iables/properties) in chemometrics. Among various models, the partial
least squares (PLS) model has obtained consistent success due to its
powerful ability to deal with multicollinearity with over-determined
linear systems [1–4]. PLS is somewhat capable of handling nonlinear-
ities by including additional latent variables, but at the risk of over-
fitting and at the cost of being an unnecessarily complex calibration
model. Hence, when facing complex systems with significant nonlinear
characteristics, the conventional PLS model is not appropriate for de-
scribing the underlying data structure [5,6].

To delineate this issue, an increasing number of PLS-based regres-
sion models have been proposed [7,8]. The first type is nonlinear PLS
models that describe the relationship between latent variables in a non-
linear way. Original linear inner relation is substituted with some non-
linear functions such as quadratic polynomial, spline and artificial
neural networks. As nonlinear variants of PLS, quadratic PLS (QPLS)
[9–11], spline PLS (SPLS) [12] and neural network PLS (NNPLS) [13,14]
have gradually been proposed. However, within these models there
exist some inherent obstacles. For example, the nonlinearity of the
QPLS model is limited because of the predefined form of the quadratic
function. Conversely, SPLS and NNPLS are flexible enough to fit varying

nonlinearity, but these two algorithms suffer from over-fitting or local
minima. The second type is locally weighted regression PLS (LWR-
PLS) [15–17], which uses PLS as a regression method to construct a
localmodel by prioritizing samples in a dataset according to the similar-
ity between them and a query sample. The defined drawbacks are the
use of more than one model to cover all the test samples and the in-
creased number of samples needed for the modeling.

The third type is kernel PLS (KPLS) [18–22]. Unlike the aforemen-
tioned nonlinear PLS methods, KPLS transforms original predictor vari-
ables into a high-dimensional feature spaces via nonlinear kernel
functions and then establish a linear PLS model in the new feature
space. Its advantage lies in the fact that nonlinear optimization problem
is avoided by utilizing the kernel function corresponding to the inner
product in the feature space. Nevertheless, without sufficient prior in-
formation and knowledge of the complex nonlinear relation in the
data, selecting an optimal kernel function is a still trial and error process
and depends largely on the experience or expertise of the practitioner.
In general, the user-defined kernel functions are not sufficient to cap-
ture the variability of the nonlinear transformation and can lead to
under-fitting of the model.

In addition to the above-mentioned nonlinear models, another PLS
based model is to utilize some suitable transform on PLS output to
handle the nonlinearity that remains in the output, such as polynomial
transformation [23,24]. The correspondingmodel is abbreviated as PLS-
Poly. Nevertheless, polynomial isn't flexible enough and another better
transformation is desired. More recently, one of the authors (Y. Bi)
presented a modified PLS method with slice transform-based weight
updating strategy [25]. In his method, the substitution property of
slice transform (SLT) was used to obtain the optimal piecewise linear

Chemometrics and Intelligent Laboratory Systems 138 (2014) 72–83

⁎ Corresponding author. Tel.: +86 1062520293.
E-mail address: peng.shan@ia.ac.cn (P. Shan).

http://dx.doi.org/10.1016/j.chemolab.2014.07.015
0169-7439/© 2014 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r .com/ locate /chemolab

http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2014.07.015&domain=pdf
http://dx.doi.org/10.1016/j.chemolab.2014.07.015
mailto:peng.shan@ia.ac.cn
http://dx.doi.org/10.1016/j.chemolab.2014.07.015
http://www.sciencedirect.com/science/journal/01697439


representation of the weight vectors. Hence, inspired by the excellent
performance of SLT technique in piecewise linear approximation, we
proposed a novel PLS based piecewise linear model termed as PLS-SLT.
The fundamental idea is to use SLT to provide a piecewise linear repre-
sentation of PLS predicted values and estimate the optimal mapping
function (under least squares criterion) representing the nonlinear
relationship between PLS predicted values and observed values. It is
equivalent to complete two tasks. One is to automatically split the
overall range of a noted response variable into some appropriate
subranges; the other is to provide each subrange with more accurate
linear predictor–response relationship. In a linear manner, PLS-SLT
achieves nonlinear calibration. PLS, QPLS, LW-PLS, KPLS, SLT-PLS and
PLS-Poly are selected to compare with PLS-SLT on prediction accuracy.
In addition, theWilcoxon signed rank test is used to determinewhether
PLS-SLT statistically significantly outperformed other models. Two
publicly available near infrared (NIR) datasets are used as experimental
objects. Results of these two datasets reveal that PLS-SLT has better
predictive ability than other models and has a potential application
in nonlinear calibration for chemical systems with a wide range of
response variable.

2. Theory

2.1. Summary of PLS and SLT

In the following, PLS refers to PLS1 if there is no special annotation.
Let us denote byX∈ℝn × N the spectral data (predictor variables)matrix
and y ∈ ℝn × 1 the concentration (response variable) vector. The super-
scripts n and N represent the number of samples and wavenumbers,
respectively. Both X and y are assumed to be column mean-centered.

2.1.1. The PLS model
The core idea of linear PLS is to project two blocks of variables (X and

y) onto their corresponding subspace of orthogonal latent variables
(scores) and then model the linear relationship between them. The
nonlinear iterative partial least squares (NIPALS) [26] algorithm is com-
monly used to sequentially extract the weight vectorsw and c by max-
imizing the covariance between the latent vectors (t and u). In general,
the PLSmodel is composed of two linear latent variable decompositions
of the input and output variables and a linear inner relation between
each pair of latent variables [27,28]. The corresponding formulas are
demonstrated by the following:

X ¼
XA
i¼1

tip
T
i þ EX¼TPT þ EX ð1Þ

y ¼
XA
i¼1

uiq
T
i þ Ey¼UQ T þ Ey ð2Þ

U¼TBþEU¼ b1t1; ⋯; bAtA½ � þ EU ð3Þ

where T ∈ ℝn × A and P ∈ ℝN × A are score and loading matrices for X-
block; U ∈ ℝn × A and Q ∈ ℝ1 × A are the score and loading matrices
for y-block; EX ∈ℝn × N, Ey ∈ℝn × 1 and EU∈ℝn × 1 are the correspond-
ing residual error matrices. Note that the inner regression coefficients
(bi = ui

Tti/(tiTti), i = 1, 2, …, A) are represented by a diagonal matrix B
with the off-diagonal elements set equal to zero.

By introducing the matrix R = W(PTW)−1, the input score matrix
(T) can be directly evaluated from the original predictor matrix, X, as
follows:

T¼XR ¼ XW PTW
� �−1 ð4Þ

whereW∈ℝN × A is the weight matrix (projection matrix) for X-block.
Thus, the final regressionmodel given by the PLSmethod can bewritten
as:

ŷ¼UQ T ¼ TBQ T ¼ XW PTW
� �−1

BQT
: ð5Þ

2.1.2. Overview of SLT
The basic concept of SLT is to implement a linear representation

of a signal with linear splines as basis functions [25,29]. For a vector
y∈ ℝn × 1 with each element satisfying yi ∈ [a, b), the SLT of y can be
defined as follows:

y¼Sq yð Þq ð6Þ

where Sq(y) ∈ ℝn × (m + 1) and q∈ ℝm + 1 are slice transformmatrix
and original boundary vector respectively. Original boundary vector
q= [q1, q2,…, qm + 1]T consists ofm+ 1 boundaries which is formed
by dividing the interval [a, b) intom bins arbitrarily and the elements
satisfy the following property: q1 = a b q2 b q3 … b qm + 1 = b.
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Fig. 1. Piecewise linear map with the substitution property of the slice transform.

Table 1
Summary of PLS-SLT.

Given calibration set (Xcalib, ycalib) and test set (Xtest, ytest)
1. Mean center Xcalib, ycalib and Xtest

2. PLS modeling
(a) Computer PLS regression coefficients bpls by Eq. (12)

(b) Computer predicted values ŷplscalib and ŷplstest for calibration and test sets by
Eq. (12)

3. SLT modeling

(a) Form new calibration set (ŷplscalib, ycalib) and test set (ŷplstest , ytest)

(b) Transform according to Eq. (13) (ŷplscalib→eyplscalib, ŷ
pls
test→eyplstest and ycalib→eycalib)

(c) Construct slice transform matrices Sq eyplscalib

� �
and Sq eypls

test

� �
by Eq. (9)

(d) Calculate new boundary vector p with 5-fold cross-validation by
Eqs. (17)–(18)
(e) Calculate final predicted values ŷcalib and ŷtest by Eqs. (19)–(20)
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