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In chemical batch processes, online identification of the batch-to-batch steady state is important for ensuring
consistency of final product quality and satisfactory process control. In this paper, an automatic steady state
identification (SSID)method is developed for batch processes,which utilizes a nonparametric signal decomposition
technique named ensemble empirical mode decomposition (EEMD) to extract related information contained in
variable trajectories and then conducts a statistical hypothesis test. In the proposed method, EEMD is combined
with a moving window procedure to decompose the signal of each variable trajectory into a finite number of
intrinsic mode functions (IMFs) in real-time. Then, the inter-batch trend information is extracted by computing
the instantaneous frequencies of each IMF.Using the variance ratio test, batch-to-batch steady state can be identified
from the inter-batch trend of each process variable. Since most of the disturbance and noise information have
been removed through EEMD, robust SSID result can be expected. To deal with the multiple process variables, a
multivariate SSID algorithm is proposed based on the statistical test for the equality of covariance matrices. The
effectiveness of the proposed method is demonstrated with an injection molding process.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In today's chemical industry, batch processing is of great importance
due to its flexibility inmanufacturing low volume and high value-added
products. Generally, a batch process can be divided into two stages: the
batch-to-batch start-up stage and the steady-state operation stage.
Here, the definition of steady state is different from that in continuous
processes. According to Aguado et al. [1], a batch process is considered
at the batch-to-batch steady state when the trajectory of each process
variable follows a stable pattern with random noise, provided that the
process is in normal operation. During the start-up stage, the incoming
materials usually have not been sufficiently mixed, and the material
properties and the machine conditions have not been stabilized. As a
result, the batch operation in such stage is unsteady and cannot guarantee
acceptable product quality, while consistent and reliable products are
only manufactured in steady-state batch operation. Since the durations
of start-up are usually unknown and varied from one process to another,
defective products cannot be rejected until a series of laboratory analyses
is conducted. Such analyses are time-consuming and may cost a lot of
labor, materials as well as financial resources. Therefore, an efficient
method is desired for online identification of the batch-to-batch steady
state, which indicates the consistency of product quality without labora-
tory analysis. Meanwhile, as discussed in [1], steady state identification
(SSID) is also critical for satisfactory batch process control.

Different types of approaches have been proposed in the research
field of automatic SSID, as reviewed by Rhinehart [2]. Among them,
the most typical approach is based on Von Neumann's work [3], which
estimates the signal variancewithin amovingwindow using two differ-
entmethods and tests the ratio of the estimated variances. If the signal is
in steady state, the two estimates should be close to each other. Cao and
Rhinehart [4] proposed an alternative approach that uses three expo-
nentially weighted moving filters to estimate the sample mean and
the sample variance, so as to avoid the storage of historical data. Then,
Ruin et al. [5] proposed to conduct principal component analysis
(PCA) before performing SSID. However, in most of these approaches,
a signal is defined as in steady state when it is constant with noise.
Such definition is obviously different from that in the context of this
paper. Due to the inherent nonlinear and non-stationary characteristics
of batch processes, the batch process signals are seldom constant.
Therefore, these methods cannot be adopted directly in batch process
applications. To the best of our knowledge, the SSID problem for batch
processeswas firstly discussed by Aguado et al. [1]. They use amultiway
principal component analysis (MPCA)model [6] to extract the informa-
tion contained in the trajectories of process variables, and then perform
the SSID algorithm developed by Cao and Rhinehart [4] on the principal
components (PCs) and themodel residuals. Themajor limitation of such
method is that it requires a large number of historical data to build an
MPCAmodel, which limits its online application. To avoid such problem,
Yao et al. [7] adopt PCA similarity factor andMahalanobis distance as the
indices to summarize the inter-batch similarity between variable trajec-
tories, and conduct the variance ratio test on both indices for SSID. Such
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method is more suited to online application. However, the similarity
indices tend to be affected by measurement noise and process distur-
bances, making the method less reliable. In recent years, the two-
dimensional dynamic PCA (2D-DPCA) method [8,9] was proposed to
model batch process dynamics in both within-batch and batch-to-
batch time directions by integrating the PCA technique and the two-
dimensional (2D) autoregressive (AR) structure. However, this method
assumes that the variable trajectories are stationary 2D time-series,
which is not the case in the start-up stage of batch processing.
Therefore, 2D-DPCA cannot be applied to batch process SSID.

Typically, the trajectory signal of a batch process variable comprises
of high frequency noise, intra-batch variations that include process
disturbances with short-term dynamics, and long-term trend from
batch to batch. Based on such consideration, this paper proposes to utilize
ensemble empiricalmode decomposition (EEMD) [10] to decompose the
trajectory signals of batch process variables. By doing this, the inter-batch
trend can be extracted from each variable trajectory, while the
measurement noise and most disturbance information are removed.
It is reasonable to expect that more accurate results can be achieved
by performing SSID on the inter-batch trend instead of the raw

process data. In the first step of the proposedmethod, EEMD is integrat-
ed with themoving window technique to realize online decomposition
of batch process signals, i.e. trajectories of process variables. A series of
intrinsic mode function (IMF) components can be computed through
the decomposition. Then, the generalized zero-crossing (GZC) approach
is adopted to calculate the instantaneous frequencies of each IMF, based
on which the inter-batch trend is obtained. For each process variable,
the SSID result is achieved by conducting the variance ratio test on the
inter-batch trend. Furthermore, the SSID algorithm is extended to a
multivariate form by testing the equality of covariance matrices.

This paper is organized as follows. The nonparametric decomposition
of batch process signals is introduced in Section 2. Then, in Section 3, the
GZC approach for the identification of the inter-batch trend is described.
Section 4 presents the use of statistical hypothesis tests for SSID.
Especially, amultivariate SSID algorithm is developed, and its application
to the multiphase batch processes is discussed. In Section 5, the imple-
mentation on an injection molding process verifies the effectiveness of
the proposed method. Finally, conclusions are drawn in Section 6 to
summarize the paper.

2. Decomposition of batch process signals

2.1. EEMD of variable trajectories

In chemical batch processes, variable trajectories are characterized
by a variety of nonlinear and non-stationary characteristics that should
be taken into consideration during decomposition. Here, EEMD is chosen
to decompose the batch process signals, due to its nonparametric nature
and capability in handling different types of signals.

The basis of EEMD is empirical mode decomposition (EMD) devel-
oped by Huang et al. [11] in 1998. As an adaptive time–frequency data
analysis method, EMD separates a time series into a finite number of
components corresponding to different frequencies through a sifting
process, together with a residue of mean trend. These components are
called intrinsicmode functions (IMFs), which should obey the following
two requirements. First, the upper and lower envelopes of an IMF are
symmetric. Second, the number of zero-crossings and the number of
extremes in an IMF are equal or differ at most by one. Thus, the IMFs
are approximately monocomponent and orthogonal.

Suppose a batch process signal (i.e. the trajectory signal of a process
variable) to decompose is denoted as x(t), where t is the sample index.
For the sample collected at the a-th sampling interval in the b-th
cycle, t = (b − 1) × T + a, where T is the total number of sampling
intervals in each cycle. The sifting process finding the IMFs is plotted
in Fig. 1, where EMD decomposes the signal from high frequency to

Fig. 1. The sifting process of EMD.

Fig. 2. Illustration of EEMD procedure.
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