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For complex industrial plants with multiphase/multimode data characteristic, Gaussian mixture model (GMM)
has been used for soft sensor modeling. However, almost all GMM-based soft sensor modeling methods only
employ GMM for identification of different operating modes, which means additional regression algorithms
like PLS should be incorporated for quality prediction in different localized modes. In this paper, the Gaussian
mixture regression (GMR) model is introduced for multiphase/multimode soft sensor modeling. In GMR,
operating mode identification and variable regression are integrated into one model; thus, there is no need to
switch prediction models when the operating mode changes from one to another. To improve the GMR model
fitting performance, a heuristic algorithm is adopted for parameter initialization and component number
optimization. Feasibility and efficiency of GMR based soft sensor are validated through a numerical example
and two benchmark processes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In modern industrial plants, process operating condition is frequently
monitored and controlled in order to improve process efficiency and
produce high-quality products. However, these techniques are highly
dependent on accurate model identification and reliable measurements.
Especially, online analysis of key process variables is critical for process
monitoring and control. In some cases, due to reasons of high
investment cost, technical difficulty, measurement delay, and so on, the
process often encounters the great challenge of lacking accurate
real-time measurements of key process variables. Over the past decades,
soft sensors have been widely used to tackle these problems, which pro-
vide frequent estimations of key process variables through those that are
easy tomeasure online [1–5]. By far, themajority of soft sensors are based
on data-drivenmodelingmethods, which construct inferential models by
using abundant process measurement data. As a category of data-driven
soft sensors, the multivariate statistical techniques such as principal
component analysis (PCA) [6], partial least squares (PLS) [7], and inde-
pendent component analysis (ICA) [8] are extensively researched and
employed in diverse processes. In addition, machine learning based
nonlinear methods like artificial neural network (ANN) [9] and support
vector machine (SVM) [10] have also been also applied for soft sensor
modeling. Apart from these, many soft sensors have also been developed
with the usage of fuzzy systems like Takagi–Sugeno fuzzymodel [11–14].

Though different types of soft sensor modeling techniques have been
applied for quality prediction, most of them are based on the assumption
that process data are generated from a single operating region and follow
a unimodal Gaussian distribution. For complex multiphase/multimode
processes that are running at multiple operating conditions, the basic as-
sumption of multivariate Gaussian distribution does not met because of
the mean shifts or covariance changes. Consequently, data distribution
may be complicated with arbitrary non-Gaussian patterns. Meanwhile,
another problem inmultiphase/multimodeprocesses is that a single glob-
al soft sensor model is no longer well suited in predicting the output of
key process variables. As mixture models can represent arbitrarily com-
plex probability density functions, they are ideal tools to model complex
multi-class data distribution.

By taking sufficient linear combinations of single multivariate
Gaussian distributions, the Gaussian mixture model (GMM) can
smoothly approximate almost any continuous density to arbitrary
accuracy [15]. Thus the GMM technique has shown strong ability in
dealing with non-Gaussian data and can be used for classification or
cluster problems in various fields. Speech recognition [16], image
segmentation [17], and robotic learning [18] are some typical
applications. With respect to the process industry, GMM is extensively
utilized for multiphase/multimode process monitoring and soft sensor
applications [19–22]. In these researches, the main purpose of GMM is
to identify and localize operating mode of data. For example, a novel
multimode process monitoring approach based on finite Gaussian
mixture models and Bayesian inference strategy is proposed in
reference [20].
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As have been mentioned, GMM can classify those data similar to
each other into the same class, and then certain data modes can be
obtained in multiphase/multimode processes. In order to carry out
soft sensor estimation of process variables, localized soft sensor
algorithm should be constructed to model the relationship between
output and input variables in each mode, respectively. In other words,
two steps are carried out in sequence when building soft sensors for
multiphase/multimode processes: mode localization step and localized
regression step. It is cockamamie and time consuming. First of all, both
classification and regression approaches should be incorporated.
Second, multiple regression models should be trained, the number of
which is equivalent to the number of operating modes. An improved
method is to give a weighted output by assigning membership degrees
to specific regions. For example, in Lughofer's research work [13,14], a
certain number of piecewise linear predictors are build in different
regions, then the output of the query sample is achieved by a weighted
sum of all the piecewise linear predictors. Such a technique can obtain
good prediction accuracy and address the non-linear problemof processes.

In a simpler and more direct way, we introduce a new soft sensing
method for multiphase/multimode processes, which is called Gaussian
mixture regression (GMR) [23,24]. GMR, first proposed in [23], is an
extension of Gaussian mixture model and can be exploited for regres-
sion problems. The regression procedure is based on the Gaussian
conditioning and linear combination properties of Gaussian distribu-
tions. By separating the data point into input and output parts, the
joint probability distribution of input and output of data point is
modeled in a GMM. Then the conditional probability distribution of
output on input is estimated with parameters obtained in GMM. After
the training step, output can be predicted when an input data comes.

Compared to deterministic regression methods like the fuzzy
systems [13,14], GMR tries to find the relationship between the input
and output under a probabilistic maximum likelihood framework.
Besides, as mentioned in reference [24], GMR is easy to implement,
and satisfies robustness and smoothness criterions that are common
to a variety of fields. Although the theoretical considerations of GMR
were presented two decades ago, it has come outwith only few applica-
tions [25–28]. By far, GMR has mainly been utilized in area of robot
programming by demonstration (PbD) for imitation learning of multi-
ple tasks [28,29]. To our best knowledge, this method has not been
applied in other fields yet. Particularly, no literature about GMR has
been found for soft sensor application in chemical processes up to
now. Therefore, the advantage of GMR in soft sensor modeling has not
yet been explored.

Two practical but fundamental issues to be addressed in employing
GMR are as follows: (1) how to determine the number of Gaussian
components, (2) how to calculate the parameters in the mixture
model. Too small number of components will result in under-fitting
problem, while a large number suffers from computational burden
and data overfitting; thus, a proper number of Gaussian components
are critical to adequately describe the data in GMR. There are several
techniques such as Schwarz's Bayesian inference criterion (BIC) [30],
the minimum message length (MML) [31], and the minimum descrip-
tion length (MDL) [32] that can be used. For the second issue, the expec-
tation maximization (EM) algorithm [33] is a classical method for
learning the parameters of mixture models. By iteratively running
E-step and M-step, the parameters will converge to optimum values.
Nevertheless, this algorithm has some drawbacks like the need for a
predetermined component number and critical dependence on initiali-
zation. In general, by executing certain different runs of EM algorithm
with different initializations and different component numbers, and
assessing each estimation with some criteria like BIC, the optimal num-
ber of components can be obtained by maximizing or minimizing the
criterion. However, this is computational burden and time consuming.

In this paper, a simple absolute increment of log-likelihood (AIL)
criterion is used to determine the optimal components, which will
show great effectiveness in later case studies. To overcome the

disadvantage of the EM algorithm, we adopt a heuristic procedure. We
first start with an adequately number of components to have a
fine-scale representation of data. Then by sequentially pruning the
least probabilistic component, merging the least probabilistic one with
the closest component and obtaining a nearly good initialization for
the next run of EM, new mixture models with reduced components
will be obtained successively. Detailed description of the schedule will
be explained in Section 3.

The remainder of this paper is organized as follows. In Section 2, the
definition of GMM and the EM algorithm for parameter estimation are
briefly revisited. Then the GMR based soft sensor with optimal
components selection is introduced in Section 3. A numerical example
and two application examples are provided in Section 4. Finally,
conclusions are made.

2. Preliminaries

2.1. Gaussian mixture model

Let z ϵ Rd be a data point of d-dimensional variable. If z comes from a
unimodal multivariate Gaussian distribution, then the probability
density function is given by

f zjθð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þd ∑

�� ��q exp −1=2 z−μð ÞT∑−1 z−μð Þ
n o

ð1Þ

where μ is the mean vector and Σ is the covariance matrix, and θ={μ,Σ}
are the parameters to determine a Gaussian distribution.When the data
point z is from a mixture Gaussian model, then its probability density
function can be formulated as follows [15]

p zjΩð Þ ¼
XK
k¼1

ωk f zjθkð Þ ð2Þ

where K is the number of Gaussian components in GMM, ωk is the
probabilistic weight of the kth Gaussian component and subjects to

condition of ωk≥0; ∑
K

k¼1
ωk ¼ 1, θk = {μk,Σk} represent the parameters

in the kth Gaussian component (mean vector μk and covariance matrix
Σk), and Θ = {θ1, θ2,⋯θK} = {μ1, ∑1, μ2, ∑2,⋯μK, ∑K} denote all
parameters defining each Gaussian component, respectively. Then the
total parameters in the complete GMM with K components can be
defined asΩ={{ω1, μ1,∑1}, {ω2, μ2,∑2},⋯{ωK, μK,∑K}}, which involve
both the Gaussianmodel parameters θk and the mixing probabilities ωk

(1 ≤ k ≤ K). Given a set of N independent and identically distributed
training samples Z = [z1,z2,…,zN], the likelihood and log-likelihood
function of Z can be written as

L Z;Ωð Þ ¼ ∐
N

n¼1

XK
k¼1

ωk f znjθkð Þ ð3Þ

and

logL Z;Ωð Þ ¼
XN
n¼1

log
XK
k¼1

ωk f znjθkð Þ
 !

ð4Þ

2.2. EM algorithm for GMM

To build a GMM, the unknown parameter setΩ need to be estimated
firstly. This problem is equal to find parameters that maximize the log-
likelihood function formulated as

Ω̂ ¼ arg max
Ω

logL Z;Ωð Þð Þ ð5Þ
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