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The application of statistical techniques for the recognition and identification of contamination sources has
become an increasingly important tool. The chemical compositions of soil samples collected in the Puchuncaví
Valley (Chile) provide a dataset suitable for the application of source apportionment techniques such as positive
matrix factorization (PMF) and principal component analysis (PCA) with varimax rotation. PMF allowed the
identification of the chemical profile and the relative contribution of three interpretable factors related to three
contamination sources. Combining these results with a PCA analysis successfully showed that the main source
of pollution emits Cu, Zn, As, Se, Mo, Sn, Sb and Pb. Therefore, the use of source profiles for contaminated soils
shows much promise both for incorporating well-established knowledge about pollution sources and as a tool
for incremental, exploratory data analysis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Receptor models are useful tools to identify sources of a specific pol-
lutant and to estimate the quantitative contribution of each source
based on environmental data [1]. In particular, receptor models are
mathematical procedures for identifying and quantifying the sources,
primarily on the basis of concentration measurements at the receptor
site and, generally, without the need for emission inventories andmete-
orological data [2].

The multivariate statistical model principal component analysis
(PCA) has beenwidely used to identify pollutant emission sources, gen-
erating satisfactory results [3–8]. PCA allows the numerical adjustment
of a linear model to describe the main relationships among process
variables [9]. However, the application of PCA is subject to limitations
including the exclusion of uncertainties during matrix decomposition
and the possible presence of negative factor loadings, which are difficult
to interpret in terms of physical parameters such as concentration and
mass [10,11].

The positive matrix factorization (PMF) model is a multivariate
factor analysis tool developed by Paatero and Tapper [10,12,13]. This re-
ceptor model largely overcomes the limitations of PCA by using experi-
mental uncertainties in the data matrix analysis and constraining the
solutions to non-negative values [10,14]. PCA has been used extensively

in studies of atmospheric pollution [5,15,8,16–18], soil contamination
[19–21] and other environmental matrices.

The main objective of this study was to establish the individual
contribution of the different sources that contribute to the levels of
trace elements in the soil of Puchuncaví Valley (Chile). In contrast to
previous studies based only on an analysis of the relationship between
individual concentration and distance from the source, this study
utilized themultivariate receptormodels PCA and PMF to identify emis-
sion sources along with their relative contribution to soil pollution.

2. Materials and methods

2.1. Chemical analyses

The concentrations ofmajor and trace elements in each samplewere
determined by inductively coupled plasma-atomic emission spectros-
copy (ICP-AES, Thermo Jarrell-Ash), and inductively coupled plasma-
mass spectroscopy (ICP-MS, Thermo Electron Corporation), respective-
ly. A weight of ~0.1 g of each sample was digested using pure HNO3

(65%) and HF (40%) for 4 h at 90 °C. Solutions were then evaporated
after the addition of 60% pure HClO4. The resulting solid was dissolved
by adding HNO3 and water (MQ) to obtain a 5% (v/v) HNO3 solution
for analysis. Finally, the sampleswere diluted to 25mlwithMQdistilled
water.

The nitrate and sulfate contents were evaluated by high-performance
liquid chromatography and conductivity detection (Waters). Samples for
mercury analysis were pyrolyzed in a combustion tube at approximately
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750 °C under an oxygen-rich atmosphere and collection on a gold amal-
gamator. Mercurywas then determined directly on the solidwith atomic
absorption spectroscopy using gold amalgam (LECO AMA-254). All
chemicals used were of analytical grade or equivalent.

Finally, to validate the analytical methodologies, two certified refer-
ence materials (certified in all elements considered in this study) were
analyzed using the above-described methodology, and the obtained
values were comparedwith the certified contents. Thematerials select-
ed were NIST 1633b (bituminous Coal Fly Ash) and soil sample SO-2
(Podzolic soil, CANMET). The results obtained for both materials were
statistically similar to the certified values (p b 0.05) (For details, please
review the supplementary information).

2.2. Data analysis

2.2.1. Principal component analysis
Themain objective of PCA is to reduce a large number of variables to

a smaller set of factors while retainingmost of the information from the
original dataset [22]. PCA assumes that the variables are linearly related
to a number of factors, p, so that the reduced concentration of each
element is composed of the sum of the elemental contributions of
each source of pollution in the respective site, as in Eq. (2):

Zij ¼
Xp
k¼1

aik � ckj ð2Þ

where aik is the loading factor of element i for each component k
(source) and Ckj is the score factor of each component k (source) for
each j sample.

The orthogonal transformation (normalized varimax) is applied to
maximize the number of loading factors without changing the total var-
iance or the variance of each element in the model. Once the rotation
has been completed, the elements originating from the same source
correspond to a single component with a high weight (loading factor),
and this component is associated with a specific source. To interpret
the respective factors, only loads above 0.70 are considered; this value
generally allows the definition of the least number of factors with the
highest weights [23].

2.2.2. Positive matrix factorization
The investigation of sources responsible for soil contamination in the

Puchuncaví Valley was carried out by PMF.
PMF is a least-squares factor analysis based on the principle of mass

conservation to assist in the identification of sources and their contribu-
tions to observed pollutant loadings [10,12]. The objective of PMF is to
factorize a data matrix X (nxm), where n and m are the number of spe-
cies and samples, respectively, into two separate matrices G (nxp) and F
(pxm), in accordance with the following equation:

Xij ¼
Xp
k¼1

gik � f kj þ eij ð3Þ

where Xij is the jth elemental concentrationmeasured in the ith sample,
gik is the concentration contributed by source k to sample i (the contri-
bution of each of the sources), fkj is the mass fraction (mg kg−1) of
species j in source k (the profile of each of the sources) and eij is the
part of the measurement that is not accounted for by the model, or
the so-called residual [15].

PMF estimates values by minimizing the sum of the square of the
residuals, which is expressed by the following equation [10,12,14,24]:

Q ¼
Xm
i¼1

Xn
j¼1

eij
sij

 !2

ð4Þ

where,

eij ¼ Xij−
Xp
k¼1

f ik�gkj ð5Þ

and Sij is the uncertainty in the concentration of Xij.
PMF analysis was performed using a software (PMF 3.0) developed

by the US Environmental Protection Agency (EPA). The principal differ-
ence between PCA and PMF is that the non-negativity of factors (both
loadings and scores, where gik N 0 and fkj N 0) is built into the PMF
model.

Another advantage of PMF is the calculation of the uncertainty in the
concentration Xij, which is determined by the following equation

Sij¼ lj
2 þ ðdjX ijÞ2

� �1=2 ð6Þ

where lj is the detection limit for component j, which is the control
sample plus three times the standard deviation of the control [25],
and dj represents the relative uncertainty in the matrix values Xij, for
high values of the measured parameters.

In similar studies, this uncertainty has been adjusted in the range
0.1–0.3 in order tominimize theQ values [15,25,26]. In this case, several
approaches were evaluated and the best results were obtained using a
combination of standard practices and estimation prior to be testing
on the model.

In this work, several approaches were evaluated and the best results
were obtained using a combination of standard practices and estimation

Table 1
Concentrations of major elements in soils of Puchuncaví Valley (2007–2009).

Sampling sites (mg kg−1 × 103) Al Ca Fe K Mg Na Ti

2007
La Greda Average 39.5 164.5 20.1 7.6 3.8 10.7 2.4

Max. 47.0 209.6 23.4 9.8 4.0 14.5 3.0
Min. 26.1 135.1 14.4 5.1 3.3 7.1 1.5

Los Maitenes Average 69.5 15.1 40.8 16.6 4.5 23.0 5.1
Max. 72.8 15.7 41.9 17.1 4.6 23.7 5.5
Min. 66.1 14.3 39.3 16.0 4.4 21.8 4.8

Valle Alegre Average 69.8 17.8 47.7 12.9 4.8 19.7 4.3
Max. 75.6 27.2 74.3 13.6 9.3 23.4 6.1
Min. 66.5 13.9 36.3 12.0 2.6 18.1 2.6

Puchuncaví Average 65.1 15.2 32.1 13.0 3.0 20.6 4.1
Max. 69.6 17.0 33.1 13.7 3.5 21.8 5.8
Min. 61.3 13.5 31.3 12.1 2.3 19.6 1.1

2008
La Greda Average 50.7 133.5 25.2 10.2 4.1 15.0 3.1

Max. 79.1 273.3 37.2 16.5 4.6 25.3 4.3
Min. 16.6 27.8 9.7 3.3 3.6 5.1 1.5

Los Maitenes Average 66.9 14.5 42.3 15.2 4.5 21.6 5.4
Max. 74.6 17.4 46.6 16.6 5.0 24.0 6.1
Min. 51.9 12.6 33.3 13.1 3.5 18.9 4.1

Valle Alegre Average 78.1 17.5 51.5 17.5 7.4 26.0 5.9
Max. 83.4 18.7 57.3 17.6 9.6 26.6 7.1
Min. 75.7 16.3 48.9 17.4 6.0 25.6 3.4

Puchuncaví Average 75.2 14.7 39.7 12.8 5.6 21.5 3.2
Max. 85.7 18.7 60.0 13.0 14.2 23.2 5.9
Min. 68.9 13.0 32.1 12.4 2.5 20.4 1.3

2009
La Greda Average 86.9 21.8 39.9 15.3 5.1 23.5 4.4

Max. 93.5 41.0 43.3 17.3 5.2 26.4 4.9
Min. 83.0 13.4 35.0 11.9 4.8 18.5 3.8

Los Maitenes Average 81.7 17.1 49.9 16.9 4.9 24.7 4.7
Max. 83.3 18.7 53.5 17.5 5.3 25.5 7.2
Min. 80.2 15.4 43.3 16.3 4.5 24.1 2.6

Valle Alegre Average 80.1 18.1 53.7 16.9 7.2 25.8 7.2
Max. 81.2 18.5 55.2 17.9 8.3 26.2 7.6
Min. 79.4 17.7 51.2 16.5 5.9 24.8 6.9

Puchuncaví Average 74.7 13.4 34.7 13.1 3.3 21.9 4.8
Max. 76.6 15.4 38.2 13.8 4.0 23.6 6.7
Min. 71.7 12.2 31.4 11.9 2.9 19.3 1.7

Maitencillo Average 85.2 24.2 58.2 14.9 8.5 25.1 4.1
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