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The Adair equation is used to model biological macro-molecule reactions. This equation relates the saturation
rate to the free ligand concentration. But, the latter is not a variable completely under the control of the experi-
menter. The ligand is a random variable depending on an initial ligand added by the experimenter, which can be
designed, but the dependence of the saturation rate on the initial ligand has not been considered in the literature.
In this paper a transformedmodel based on theAdairmodel offirst order (monomer) is derived in order to obtain
a propermodel that depends on the initial ligand. This model will allow proper fitting and optimal designs using
the initial ligand. It will be called the transformed Adair model (TAM). Optimal designs as well as seven-point
quasi-optimal designs forced to follow a harmonic, geometric or uniformprogression, are computed. The param-
eters are estimated and compared for simulated data from these designs. A sensitivity analysis against the choice
of nominal values of the parameters is also performed for the TAM. The analytic version of the transformedmodel
is only possible for the first class model. But the good efficiencies of the optimal designs obtained directly from
the monomer model for fitting the TAM justify doing something similar for the second order model (dimer).
Designs were computed numerically in this case.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The Adair model is used in chemical reactions once the balance
between a biological macro-molecule and a ligand is reached. A ligand
is usually a smaller molecule and sometimes another macro-molecule.

These types of reactions are usually reversible. Adair [1] proposed a
sequential equation to model how the oxygen molecules are bound to
subunits of hemoglobin. The hemoglobin is a quaternary structure pro-
tein, whose main function is the transport of oxygen. The sigmoidal
shape of the curve describing theunion of thehemoglobin to the oxygen
means that it has a relatively low affinity to capture the first molecule.
The increasing slope means that the binding of the first molecule of
oxygen facilitates the binding of another oxygen molecule to the
second subunit and so on. This is known as binding cooperation. The
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hemoglobin binds a fourth oxygen molecule with an affinity 100 times
greater than the first one. Obtaining the balance constants is a funda-
mental issue (see e.g. [12]). The known antigen binding, such as viral
antigens, bacterial antigens, and drugs, is of common use in biomedical
practice through immunoassays. Tetin and Hazlett [15] considered the
interaction antibody–ligand and the determination of the balance
binding constant with different models, including the Adair model.
The protein–ligand models are remarkably analogous to metal–ligand
complexation models that are dependent on the initial ligand concen-
tration [12]. However, the positive cooperativity behavior is unique to
these biological systems.

In this paper, optimal experimental designs are computed in
order to better fit the Adair model. The theory of optimal experimen-
tal designs has been developed considerably, especially after finding
the celebrated equivalence theorem [9]. This theorem gives a power-
ful tool to check whether a particular design is D-optimal (equiva-
lently G-optimal). Whittle [16] generalized this to a more general
class of optimality criteria. The General Equivalence Theorem (GET)
provides also a tool to construct optimal designs using different algo-
rithms [5,17] for the popular Wynn–Fedorov algorithm. A suitable
choice of the experimental conditions can improve inferences on
the model. The Adair equation properly describes a particular micro-
biological phenomenon, in which a random error with zero mean
needs to be added to condense the uncertainty. The variance of an
observation (or the error) may be constant or dependent on the
experimental conditions through a mathematical model, e.g. de-
pending on the mean model.

2. Deriving the Adair model

Let Y be the saturation rate of a macro-molecule. This random
variable is decomposed into a form depending on the concentration of
the free ligand, [L], plus a random error.

A typical experiment to describe the chemical process consists of
introducing a solution of concentration of a macro-molecule or a pro-
tein, [P0], into a semi-impermeable dialysis bag. Then, the bag is put in
a recipient with initial ligand concentration, [L0]. Fig. 1 (left) shows
the initial situation for the monomer case with just one binding site.

Then, the ligand molecules start penetrating the bag but the protein
molecules cannot get out. The equilibrium is reached once there is equal
free ligand concentration in and out of the bag, say [L]. Fig. 1 (right)
displays this situation for the monomer. In order to measure this
concentration the bag is withdrawn and the free ligand within the
container is measured. If the protein has n binding sites and the li-
gand can bind the protein through 0, 1, 2, …, n sites, the concentration
of protein bound to the ligand will be denoted by [Mn

i ], with i =
1, 2, …, n the number of sites of the protein bound to the ligand. Thus,
in the interior of the bag there is the free ligand, [L], the bound ligand
(to the protein or macro-molecule), [Mn

i ], i = 1, 2, …, n, and the un-
bound protein, [Mn

0].
Let r be the observed average number of busy sites, that is, the

number of moles of the bound ligand per mol of protein, 0 b r b n. The

saturation rate is defined as Y = r/n ∈ [0, 1]. The mean value of the
busy sites is
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Total of macro‐molecule½ �

¼
M1

n

h i
þ 2 M2

n

h i
þ…þ n Mn

n

� �
M0

n
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n

� �þ…þ Mn
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¼ K1 L½ � þ 2K1K2 L½ �2 þ…þ nK1…Kn L½ �n
1þ K1 L½ � þ K1K2 L½ �2 þ…þ K1…Kn L½ �n ;

where the asymptotic value of r is the average number of bound sites in
each macro-molecule divided by the number of macro-molecule bind-
ing sites, n. Thus, the model can be formulated as

Y ¼ K1 L½ � þ 2K1K2 L½ �2 þ…þ nK1…Kn L½ �n
n 1þ K1 L½ � þ K1K2 L½ �2 þ…þ K1…Kn L½ �n� �þ ε: ð1Þ

The parameters may be estimated using Least Squares Estimates
(LSE),MaximumLikelihood Estimates (MLE) or bydoing some transfor-
mation to linearize themodel for themonomer. Formore details see [6].
Tetin and Hazlett [15] stressed that either these linear transformations
or the deletion of experimental data introduce uncontrolled bias in
the estimation process. In order to use these linear equations they sug-
gested using weighting optimization. Throughout this paper the MLE
will be used assuming normality and so they are LSE. No linearization
by transforming the equation will be considered in this paper.

Monod's equation is a classic microbiological model describing the
kinetics of batch microbial growth. Another typical model used in this
field to describe the kinetics of fast equilibrium of enzymatic systems
and the analysis of data from drugs, neurotransmitters and assays
with hormonal receptors is the popular Michaelis–Menten model [11].
TheMonod equation has the same form as theMichaelis–Menten equa-
tion, but the Monod equation is empirical while the latter is based on
theoretical considerations. López–Fidalgo et al. [10] computed optimal
designs for population growth models.

The aim of this paper is to compute and compare suitable experi-
mental designs for the Adair model for the saturation ratio with
macro-molecules with one and two binding sites (monomer and
dimer). An optimal design will provide both, good estimates and
savings in the use of experimental resources [5]. The theory of optimal
experimental design provides tools for computing good estimates
from different points of view. One of the criticisms made to this theory
is that optimal designs frequently claim for extreme points not allowing
the detection of some features of the data as is the case of possible cur-
vature. This is the reasonwhy in this paper a greater number of different
points in the design are forced through regular sequences as classes of
harmonic, geometric or uniform progressions.

2.1. Optimal design background

For nominal values of the parameters locally optimal designs will be
obtained [3] maximizing the determinant of the Fisher Information
Matrix (FIM). For the monomer the information matrix is a scalar and
an analytic expression is available for the one-point optimal design.
For a dimer two parameters are in the model and therefore two or
three points will be needed. For this case the equivalence theorem will
be used to compute optimal designs.

An (exact) experimental design is a collection of points [L]1, …, [L]N
from a design space χ. Some of them may be repeated, which means
several experiments are realized for the same experimental condition.
The total number of observations is N and this number is limited by
cost, time or feasibility restrictions. A good experimental designmay re-
duce this number, and so as cost and time, preserving a good estimation
of themodel. Taking into account that possible replicates of some points
are possible a probability measure may be defined identifying the

Fig. 1. The initial phase of the experiment (left) and the experiment at equilibrium (right)
for the monomer.
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