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The goal ofmetabolic association networks is to identify topology of ametabolic network for a better understanding
of molecular mechanisms. An accurate metabolic association network enables investigation of the functional
behavior of metabolites in a cell or tissue. Gaussian Graphical model (GGM)-based methods have been widely
used in genomics to infer biological networks. However, the performance of various GGM-based methods for the
construction of metabolic association networks remains unknown in metabolomics. The performance of principal
component regression (PCR), independent component regression (ICR), shrinkage covariance estimate (SCE),
partial least squares regression (PLSR), and extrinsic similarity (ES) methods in constructing metabolic association
networkswas comparedby estimatingpartial correlation coefficientmatriceswhen thenumber of variables is larger
than the sample size. To do this, the sample size and the network density (complexity)were considered as variables
for network construction. Simulation studies show that PCR and ICR are more stable to the sample size and the
network density than SCE and PLSR in terms of F1 scores. These methods were further applied to the analysis of
experimental metabolomics data acquired from metabolite extract of mouse liver. For the simulated data, the
proposed methods PCR and ICR outperform other methods when the network density is large, while PLSR and
SCE perform betterwhen the network density is small. As for the experimentalmetabolomics data, PCR and ICR dis-
covermore significant edges and perform better than PLSR and SCEwhen the discovered edges are evaluated using
KEGG pathway. These results suggest that the metabolic network might be more complex and therefore, PCR and
ICR have the advantage over PLSR and SCE in constructing the metabolic association networks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Metabolomics is a rapidly emerging field to systemically analyze
small-molecule metabolites, which are the end products of cellular
processes in a biological organism [1]. Construction of metabolic
association networks is a critical data analysis step in systems biology.
Themetabolic association network is a collection ofmetabolite relations
during cellular processes. In this work, we focus on methods of
constructing metabolic networks that represent biochemical transfor-
mations among metabolites.

A relatively smaller number of studies have been reported for meta-
bolic network construction. Arkin et al. [2] predicted interactionswithin
reaction networks over time for the glycolytic pathway. Steuer et al. [3]
examined the relationship between data generated from networks and
biochemical pathways using potato plant metabolism. Ursem et al. [4]
constructed the metabolic networks from metabolite abundance in

different tomato genotypes. All of these studies used the Pearson's
correlation coefficients to construct the metabolic networks. A major
drawback of Pearson's correlation-based networks is unable to
distinguish between the direct and the indirect associations. On the
other hand, Gaussian graphical models (GGMs) reveal direct associa-
tions with conditional independence/dependence among variables,
using partial correlation coefficients that are calculated by the correla-
tion of two variables after removing the effect of other variables [5,6].
GGMs have been employed in metabolomics for several studies.
Greenberg et al. [7] used the pseudo-inverse method to estimate the
partial correlation (PC) for the study of the influence of enzyme evolu-
tion on Drosophila metabolic pathway. Chan et al. [8] also constructed
the metabolic network to quantify metabolites present in Arabidopsis
thaliana using the first-order correlation in which the effects of only
one variable are removed. Theis et al. [9] used GGMs for reconstructing
pathway reactions from human population cohort when the size of
samples (experiments) was larger than the number of variables
(metabolites). None of these studies, however, used dimension-
reduced regression to construct the network.

Reconstructing GGMs using high-dimensional data remains as a dif-
ficult task, especially when the number of variables is larger than the
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sample size. The standard estimation of PCs includes either inversion of
sample covariance matrices or estimation of p least squares regression
problems, where p is the number of variables. If the number of samples
(observations) n is much smaller than p, these approaches are inappro-
priate. One alternative is to use dimension-reduced regression such as
the partial least squares regression (PLSR) [10–12]. Its goal is to discover
orthogonal components (score matrix) to maximize the covariance of
dependent (response) and independent (predictor) variables.

Independent component and principal component regression analy-
ses (ICR and PCR, respectively) were considered in this study, and their
performance for the construction of metabolic network was compared
with the performance of PLSR, shrinkage covariance estimator (SCE)
[13], and extrinsic similarity (ES) [14,15]. Note that PLSR and SCE
were included in this comparison based on the previous studies [10,
11]. Although some studies have been performed to compare the per-
formance among different GGM-based methods including PLSR and
SCE [10,12], none of these studies included PCR and ICR for network
construction. PCR finds a scorematrix tomaximize variance of indepen-
dent variables, while ICR finds it tomaximize independence. It is known
that these two methods will produce the same results if a normal
distribution is assumed [16]. The main difference between ICR/PCR
and PLSR is that ICR and PCR reduce the dimensions of data without
using dependent (response) variables.

Several studies compared the performances between PCR/ICR and
PLSR but not in metabolomics. For example, Dupret et al. [17] showed
that PLSR performs better than ICR, while Funatsu et al. [18] verified
that ICR is superior to PLSR when it was applied to a quantitative struc-
ture–property relationship analysis. Also, Wentzull and Montoto [19]
reported that no significant difference is shown between PLSR and
PCR in terms of prediction errors although Yeniay and Göktas [20]
urged that PLSR outperforms PCR. It still remains unclear which of
these methods provides the precise output for network construction
in metabolomics.

2. Methods

2.1. PC

The PC ρXY\Z between X and Y given a set of n variables Z={Z1,…, Zn}
is the correlation between the residuals RX and RY resulting from the
linear regression of X and Y on Z, respectively. PC can be interpreted as
the association between two random variables after eliminating the
effect of a set of random variable. Consider xi, yi and zi = (z1i , …, zni ) as
samples of a joint probability distribution over X and Y on Z, and assume
that the multiple regression problems are

xi ¼ wx
0 þwx

1z
i
1 þ ⋯þwx

nz
i
n; ð1Þ

yi ¼ wy
0 þwy

1z
i
1 þ ⋯þwy

n z
i
n; ð2Þ

where i = 1, ⋯, N. Then the least square solutions ŵX , ŵY of the regres-
sions find the vectors tominimize themean squared error of estimators
x̂i and ŷi with respect to x and y, respectively. The residuals then are

rX;i ¼ xi− x̂i; ð3Þ

rY;i ¼ yi− ŷi; ð4Þ

and the sample PC is

ρ̂XY /Z ¼ Corr RX ;RYð Þ; ð5Þ

where Corr(⋅,⋅) denotes the Pearson's correlation coefficient of two
random variables, RX = (rX,1, ⋯ rX,N) and RY = (rY,1, ⋯ rY,N).

The problem often is that XΤX is singular or ill-posed because the
sample size is smaller than the number of variables. An alternative
solution of this problem is to use dimension reduction methods
for linear regression, which transforms the high-dimensional space into
a space spanned by fewer components. Also, those methods can be ap-
plied to linear regression and machine learning approaches to increase
performance [21,22]. It is desirable that the dimension-reduced data (p̂≤
n) can make XTXwell-posed as well as increase the performance.

As mentioned before, we employ five methods to resolve this diffi-
culty in this study, which are shrinkage covariance estimation (SCE)
[13], PCR, PLSR [23], ICR [24], and ES [15]. Here SCE is a regularized ap-
proachwith shrinkage intensity, while ES usesmutual information. PCR,
ICR, and PLSR are dimension reductionmethodswith feature extraction.
The differences among PCR, ICR, and PLSR are as follows: PLSR uses both
dependent and independent variables to reduce data dimension, while
PCR/ICR uses only independent variables, and PCR/PLSR finds orthogo-
nal features based on the normality assumption, while ICR finds
independent features based on non-normality. Several studies consid-
ered PLSR to see the performance on biological network construction
[10,11]. However, there is no study to see the effect of differences
among these three approaches on network construction. For this
reason, we consider PCR, ICR, and PLSR in this comparison study.
Furthermore, we employ SCE as a reference based on the previous
comparison study [10], and ES is also included to see the effect ofmutual
information.

2.2. SCE

Schäfer and Strimmer [13] proposed SCE to estimate the PC when
the covariance matrix Σ is singular. Under singularity of covariance
matrix, an alternative method is to trade off the unbiased sample
covariance Σ and low dimensional shrinkage target matrix T;

Σ̂ ¼ λT þ 1−λð ÞΣ; ð6Þ

where λ ∈ (0, 1] is shrinkage intensity. The optimal value of the tuning
parameter λ is analytically determined and estimated from the data. For
a more detailed description, refer to Schäfer and Strimmer [13].

2.3. PCR and PLSR

PCR and PLSR [23] circumvent high-dimensional problem by
decomposing a data matrix X into orthogonal scores T and loadings P

X ¼ TPT þ XR; ð7Þ

and regressing dependent variable Y on the first r important columns
{t1, t2, …, tr} of the scores T, where XR is the remains of decomposition.
In PCR, the orthogonal scores T(n × r) and loadings P(p × r) matrices
can be calculated by applying the singular value decomposition (SVD)
method to a centered data matrix X as follows:

X ¼ UDPT
; ð8Þ

where U(n × r) and P(p × r) are orthogonal matrices corresponding to r
singular values. And the scores matrix T is defined by

T ¼ UD: ð9Þ

After choosing the optimal or suitable number of components, the
first r important components of X are preserved by T. Since the matrix
T is orthogonal, TTT is diagonal and nonsingular matrix. Then the
coefficientβT for a linear regressionY on the scorematrix T is estimated by

β̂T ¼ TTT
� �−1

TTY; ð10Þ

194 I. Koo et al. / Chemometrics and Intelligent Laboratory Systems 138 (2014) 193–202



Download English Version:

https://daneshyari.com/en/article/1180747

Download Persian Version:

https://daneshyari.com/article/1180747

Daneshyari.com

https://daneshyari.com/en/article/1180747
https://daneshyari.com/article/1180747
https://daneshyari.com

