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The kernel partial least squares (KPLS) method was originally focused on soft-sensor calibration for predicting
online quality attributes. In this work, an analysis of the KPLS-based modeling technique and its application to
non-linear process monitoring are presented. To this effect, the measurement decomposition, the development
of new specific statistics acting on non-overlapped domains, and the contribution analysis are addressed for pur-
poses of fault detection, diagnosis, and prediction risk assessment. Some practical insights for synthesizing the
models are also given,which are related to an appropriate order selection and the adoption of the kernel function
parameter. A proper combination of scaled statistics allows the definition of an efficient detection index for
monitoring a non-linear process. The effectiveness of the proposed methods is confirmed by using simulation
examples.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The design of monitoring systems for supervising the operation of
industrial processes has acquired great relevance in the last decade.
This fact is essentially due to the need of more demanding operating
conditions related to security for equipments and personnel, operating
costs, and environmental restrictions. Furthermore, the increasing com-
plexity observed in the interactions between energy — and mass —

transfer processes, and their corresponding control policies, require
more sophisticated monitoring systems in aspects such as detection
rate, robustness, user friendliness, easiness of understanding, modeling
and data storage requirements, and adaptability, among others [1,2].

The multivariate statistical process monitoring is a well-known
research topic where several strategies based on projection to latent
structures have successfully been developed. Moreover, they are of
great interest in industrial applications because of their excellent prop-
erties for handling noisy and highly correlatedmeasurements, and large

data sets [2–4]. Some of these approaches are summarized in [4–10]
where the principal component analysis (PCA), independent component
analysis (ICA), and partial least squares regression (PLSR)methodologies
were addressed. There are also several modifications to these tools
for including issues such as dynamics, adaptation, and non-linearity
[2,8,11–16].

In this work, a non-linear version of the partial least squares (PLS)
approach— called kernel PLS (KPLS)— is addressed. KPLS is a powerful
statistical tool for obtaining multivariate non-linear relationships from
historical data. In fact, it is a non-linear regression method that com-
putes the regression coefficients in a high-dimensional space; the
input data are mapped via non-linear functions in this space and then
they are linearly related to the measured outputs. Hence, the KPLS
approach represents a suitable methodology for predicting online un-
measured quality variables in complex non-linear processes. The overall
procedure relies on classic linear algebra, similar to the linear projection
methods, and the non-linearity degree is mainly given by the selected
kernel function associated to the mapping functions [17]. Ever since
the KPLS approach appeared, somemodifications aswell as applications
have been published in the process monitoring area. For example, a
kernel-based PLS system linked to orthogonal signal correction has
been proposed for data preprocessing and prediction purposes [12];
and a modified PLS method of independent component regression has
been used for complex processes monitoring [8]. An application of
non-linear multivariate quality prediction based on KPLS has also been
presented [14]. In this context, new publications addressing the fault
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detection tasks based on KPLS have also appeared [18,19]. In the last
decade, KPLS or variants thereof have been applied for composition
analysis of agricultural materials [20] and foods [21], process analysis
[22], determination of structure–activity relationships [23], studies on
drug metabolism [24], and quality-related monitoring [25], among
others.

KPLS method, as well as other kernel based modeling methods [26],
is often used as a black box approach. However, in contrast to kernel
PCA (KPCA) [11,16], KPLS is able to properly determine the predictive
importance of each input variable onto the final regression model.
This result can then be used for reducing the number of inputs
and therefore the complexity of the model. For instance, Postma et al.
[27] propose amethod based on the principle of pseudo-sampled trajec-
tories (representing the original variables) that help visualize and de-
termine the most important variables for regression purposes. This
method is able to detect poor predictor variables, providing the chance
for improving the KPLS structure by eliminating interfering variables
from the pre-selected inputs. The advantage of the KPLS modeling lays
in the fact that only the outputs of interest are chosen, while the inputs
are determined by their predictive importance, thus limiting the group
of variables to be monitored.

The main objective of this article is to provide a deep analysis of the
KPLS-based modeling technique and its application to non-linear pro-
cess monitoring. Initially, the classic KPLS modeling is here extended
by adding the projections of the outputs onto the latent space. The
underlying structure of the KPLS modeling is highlighted in order to
describe the functional relationships between the spaces induced by
the KPLS procedure. Moreover, some practical insights are given for
the proper selection of the number of latent variables and for setting
the kernel function parameter. In fact, the latent space dimension is
here defined by using a new balanced index designed to efficiently
quantify the squared prediction error in both the input and output
spaces. This approach is compared with the standard output prediction
error via theWold's R criterion [7,14]. To dealwith non-linear processes,
the kernel method is first embedded into the PLS algorithm. Then, new
specific statistics (that act on non-overlapped domains) are combined
into a single index able to detect process anomalies. Finally, the statistics
pattern is used for diagnosing faults or process anomalies. In this regard,
the present monitoring technique of non-linear processes is an exten-
sion of our PLS-based strategy originally developed for monitoring
linear processes [28]. Besides, contribution plots are frequently used to
isolate the detected faulty variables without using historical fault
patterns [26,29]. However, it is difficult to build a contribution plot for
a kernel based model [29]. In this paper, a new contribution plot
based on the KPLS model is proposed for identifying faulty variables.
The proposed supervision approach puts together the abnormal event
detection, the diagnosis, and the isolation in a single method. Besides,
a risk assessment index is also developed for online quantification of
the predictive capabilities of the KPLS inferential model. The effective-
ness of the proposed method is tested through simulated examples
taken from the literature.

The article is organized as follows: Section 2 presents the basic back-
ground of the KPLS regression. Some details about the KPLS-based
modeling approach are given in Section 3. The main contributions of
this work are presented in Sections 4 and 5, where we analyze the
KPLS model calibration (Section 4), the process monitoring and the
statistics for fault detection (Section 5.1), the diagnosis method through
the pattern of statistics (Section 5.2), the fault isolation via a contribution
analysis (Section 5.3), and the prediction risk assessment (Section 5.4).
Section 6 summarizes the simulation results and the overall conclusions
are given in Section 7.

2. Basic concepts on KPLS

Consider a process withmmeasured input variables plus pmeasured
output variables which are arranged in the vectors x = [x1 … xm]′ and

y = [y1 … yp]′, respectively. Assume that N measurements of each vari-
able are collectedwhile the process is operating under normal conditions.
In order to build a KPLS regression model, let us consider the calibration
data set consisting of N centered and scaled samples for the input vector
(predictor), i.e., {xj∈ℝm}j =1

N , and the corresponding centered and scaled
samples for the response vector, {yj ∈ ℝp}j = 1

N .
The key idea of theKPLS approach is tomap the input data xj∈ℝm to

a high-dimensional space ℝc that corresponds to a reproducing kernel
Hilbert space, where the non-linear structure in the input space is
more likely to be linear, and thus a linear PLSR can be applied [17].
The non-linear mapping is not implemented through an explicit
function, φ(⋅) : ℝm → ℝc, instead a kernel function k(⋅,⋅) is proposed
for computing the following inner products,

k x j; xr

� �
¼ φ x j

� �0

φðxrÞ; with j ¼ 1;…;N r ¼ 1;…;N: ð1Þ

Thus, by replacing each inner productφ(xj)′φ(xr) with k(xj, xr), both
the explicit non-linearmapping and the inner product computation can
be avoided [17]. The kernel function k(⋅,⋅) cannot arbitrarily be selected,
but it must satisfy the Mercer's theorem conditions [17]. A specific
choice of the kernel function implicitly determines the associated map-
pingφ(∙) and the spaceℝc. Note that the dimension cmay be arbitrarily
large and can even be infinite.

The KPLS approach only uses the inner product values for
performing the non-linear regression. From Eq. (1) the so-called Gram
kernel matrix, K ∈ ℝN × N, can be obtained:

K ¼ Φ Φ
0
; with Φ ¼ φ x1ð Þ;…;φ xNð Þ½ �

0
∈ℝN�c

: ð2Þ

Similar to PLSR, the non-linear KPLS model includes zero-mean
variables. The mapped input vectors φ(xj) are centered as follows:

φ x j

� �
¼ φ x j

� �
−Φ

0
e ð3Þ

where e is a column vector with all its entries equal to 1 / N [17]. In this
way, Φ ¼ φ x1ð Þ;…;φ xNð Þ½ �0 is the centered version of Φ. Now the
centered Gram kernel matrix is given by

K ¼ Φ Φ0 ¼ I−Eð ÞK I−Eð Þ ð4Þ

where E is a (N × N) matrix with all its entries equal to 1 / N [17] and

k x j; xr

� �
¼ φ x j

� �0
φ xrð Þ is the element (j,r) of K.

From the centered data matrices K and Y = [y1, …, yN]′, a KPLS
calibration algorithm can be developed by modifying the steps of the
NIPALS algorithm [17] as shown in Algorithm 1. Specific details about
the parameter setting for the kernel function and the optimal selection
of the number of latent variables, A, are given in Section 4.

The prediction of the response variables by using the calibration data
is given by [17]:

Ŷ ¼ ΦBPLS ¼ ΦΦ0U T0KU
� �−1T0Y ¼ KU T0KU

� �−1T0Y ¼ TT0Y ¼ TC0 ð5Þ

where thematrices T= [t1,…, tA] and U= [u1,…, uA] are orthonormal
by columns. Note that, although the regression coefficients matrix BPLS

might exist (for φ :ð Þ∈ℝc when c ≠ ∞), the KPLS algorithm does not
calculate these values explicitly, i.e. the kernel substitution avoids this
evaluation.

Eq. (5) shows that the response variables (outputs) can be obtained
from the inner products of themapped vectors. Hence, for a new obser-
vation x of the predictor vector, the outputs are estimated by

ŷ ¼ B0
PLSφ xð Þ ¼ Y0T U T0KU

� �−1
h i0

k xð Þ ¼ CV0k xð Þ ð6Þ
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