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ExploratoryData Analysis (EDA) can be defined as the initial exploration of a data setwith the aimof generating a
hypothesis of interest. Projection models based on latent structures and associated visualization techniques are
valuable tools within EDA. In particular, score plots are a main tool to discover patterns in the observations.
This paper addresses the extension of score plots to very large data sets, with an unlimited number of observa-
tions. The proposed solution, based on clustering and approximation techniques, is referred to as the Compressed
Score Plots (CSPs). The approach is presented to deal with high volume data sets and high velocity data streams.
The objective is to retain the visualization capabilities of traditional score plots whilemaking the user-supervised
analysis of huge data sets affordable in a similar time scale to that of low size data sets. Efficient processing and
updating approaches, visualization techniques, performance measures and challenges for future research are
identified throughout the paper. The approach is illustratedwith several data sets, including a data set offivemil-
lion observations and more than one hundred variables.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

According to [1], Exploratory Data Analysis (EDA) is an approach to
data analysis that postpones the usual assumptions about what kind of
model the data follow with the more direct approach of allowing the data
itself to reveal its underlying structure andmodel. EDA has been employed
for decades in many research fields, including social sciences, psycholo-
gy, education, medicine, chemometrics and related fields [2,3]. EDA is
both a data analysis philosophy and a set of visualization tools [4]. Nev-
ertheless, while the philosophy has essentially remained the same, the
tools are in constant evolution, as numerous recent references suggest
[5–8]. This is the direct consequence of the increasing complexity of
the problems tackled with data analysis methods thanks to increasing
computers capabilities.

The advances in technology in the last decade have led to the so-
called Big data era, where exabytes1 of data are daily generated by
humans and,more importantly, machines [9]. This has drawn the atten-
tion of the scientific and technological community, driving initiatives for
Big data analysis like Hadoop (http://hadoop.apache.org/). Also, exten-
sions of modeling, classification and data mining techniques to Big
data, like the Mahout project (http://mahout.apache.org/), have been
developed. Unfortunately, the application of the EDA philosophy,
which relies so much on visualizations, to Big data problems is

challenging due to the large scale of the data sets involved. However,
this application deserves attention, since both EDA andmodelling appli-
cations are complementary, with EDA a suggestedfirst step prior to data
modelling [10,11]. Omitting EDA has the risk of misinterpreting the
modelling results, as illustrated in [12] with a number of real examples.
Therefore, there is the need for developing EDA methods that are suit-
able to manage the data scales aforementioned, while taking advantage
of the basic importance of simply looking at data [4].

Big data are commonly defined by the so-called 4 Vs [13]:

• Variety: Data are varied in nature. Different sources, including un-
structured and structured information, need to be properly combined
in order to make the most of the analysis.

• Veracity: The search for valuable information in large data sets is very
much like the problem of finding the needle in a haystack. Big data
present low signal to noise ratio, and exploratory and data mining
techniques are needed to find patterns or trends of practical use,
which are more reliable than punctual measures.

• Volume: The amount of data that needs to be handled simultaneously
makes processing parallelism a must. Exabytes, zettabytes, and even
higher amounts of data are described in Big data applications.

• Velocity: In Big data problems, a high rate of sampling is common. This
further complicates the analysis and makes parallelism even more
necessary.

In data setswith a large number of variables, collinear data andmiss-
ing values, projection models based on latent structures are valuable
tools within EDA. Standard well-known projectionmodels are Principal
Component Analysis (PCA) [14,15,2] and Partial Least Squares (PLS)
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1 one exabyte corresponds to 218 bytes or one million terabytes.
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[16–18]. Thesemodels and the set of tools used in combination [19–22]
simplify the visual analysis of complex data sets.While the calibration of
projection models from large scale data has already been studied [23,
24], the extension of the visual tools in this context has not been treated.
One of the most used visualization tools in the context of projection
models is the score plot. The score plot is a very useful tool to discover
the distribution of the observations, including special observations (out-
liers) and clusters of related observations. All this informationmay be of
paramount importance to improve data knowledge, and a valuable
starting point for the selection and proper application of modeling and
data mining tools.

Projection models have outstanding capabilities for combining data
from different sources and for handling uncertain data. This covers
two of the aforementioned 4 Vs of Big data. Addressing the other two,
Volume and Velocity, is the focus of this paper. For this, an approach
to extend the score plots to Big data, the compressed score plots
(CSPs), is introduced. It is argued that this extension is of interest not
only for the chemometric community, but for the general community
involved in Big data analytics. For this reason, the examples used to il-
lustrate the approach are not limited to chemometric data. Limitations
and research challenges in the proposed approach are pointed out
throughout the document.

The paper is organized as follows. Section 2 introduces PCA and PLS
and their iterative computation. Section 3 discusses the limitations of
traditional score plots to visualize a large number of observations. This
is illustrated using a data set collected from a continuous process.
Section 4 introduces the proposed solution to that limitation: the Com-
pressed Score Plots. Section 5 introduces amethodology to update Com-
pressed Score Plots when the subspace of interest changes. Section 6
illustrates the complete approach with two additional cases studies.
Section 7 presents conclusions and future research challenges.

2. Projection subspaces

Both PCA and PLS provide a similar solution to the same problem:
data collinearity. The approach of these methods to overcome the prob-
lems derived from collinearity is to identify a reduced number of new
variables, referred to as latent variables (LVs) or specifically in PCA as
principal components (PCs). These LVs are obtained as a combination
of the original variables in the data. In standard PCA and PLS, the LVs
are linear combinations of the original variables, but non-linear exten-
sions also exist [25]. For a given data set, the LVs are found bymaximiz-
ing a given quadratic function, variance in the case of PCA and
covariance for PLS. The operation to obtain the LVs from theoriginal var-
iables can be geometrically interpreted as a projection operation. Thus,
projection models can be understood as projection subspaces of the
original variables space.

PCA follows the expression:

X ¼ TA � Pt
A þ EA; ð1Þ

where TA is the N × A score matrix containing the projection of the
observations in the A PCs sub-space, PA is theM× A loadingmatrix con-
taining the A eigenvectors of XT ⋅ Xwith highest associated eigenvalues
and EA is theN ×Mmatrix of residuals. The number of PCs retained in a
PCA model, A, is a principal choice [15,26], which in general can be
regarded as an application dependent decision [27,28].

PLS performs a biased solution of the linear regression problem to
the least squares solution. The linear regression problem is defined by
the following expression:

Y ¼ X � Bþ F ð2Þ

where Y is theN× Kmatrix of variables that are to be estimated,X is the
N×Mmatrix of variables available to estimateY,B is theM×Kmatrix of
regression coefficients and F is the N × Kmatrix of residuals. A possible

way to interpret B is as a model of Y, with X being the input to the
model.

The aimof PLS regression is to estimateY from the subspace ofX that
maximizes its covariance with Y. The partial linear regression problem
between normalized matrices X and Y can be stated as:

X ¼ TA � PT
A þ EA

Y ¼ TA � Q T
A þ FA

ð3Þ

where TA is theN×A scorematrixwhich contains the projections ofX to
the latent A-dimensional subspace, PA and QA are the M × A and K × A
regressor matrices, also called loading matrices, and EA and FA are the
N × M and N × K matrices of residuals of X and Y, respectively. Eq. (3)
can be rearranged in the following form:

Y ¼ X � RA � Q T
A þ FA ð4Þ

with:

RA ¼ WA � PT
A �WA

� �−1 ð5Þ

whereWA is aM× Amatrix ofweights. Thus, a PLSmodel is represented
by matrices PA, WA and QA.

A useful variant of PLS for supervised classification in EDA is PLS-
Discriminant Analysis (PLS-DA) [29]. In PLS-DA, matrix Y is artificially
generated with dummy variables, which codify the different classes in
thedata set. Typically,Y is constructedwith asmany variables as classes.
All the observations belonging to a class have value 1 for the corre-
sponding variable, and −1 (or 0) for the rest.

In the following subsections, some problems arisen to fit projection
models from Big Data are discussed. Since the main goal of the present
paper is to provide a solution to data visualization, model fitting prob-
lems are only briefly reviewed and a practical solution based on the it-
erative computation of cross-product matrices is adopted.

2.1. Computation of projection models from large volumes of data

There are two problems of interest to the scientific community in the
calibration of projection models from very large data sets. The main
problem is to compute the model out-of-core [30], that is, without
maintaining the whole data set in the main memory of the computer.
A second problem is the development of fast, approximate and compu-
tationally efficient calibration algorithms [31,32]. Model fitting does not
represent the most computational intensive step in the proposal of this
paper. For this reason, this section is only devoted to the first problem.

Several algorithms for PCA or PLS model fitting take the calibration
data set X (and optionally Y), with N observations, as input. Due to lim-
ited computer resources, in particular computermemory, this approach
is infeasible when N grows beyond a certain number, as is the case for
large volume data sets. In those cases, cross-product matrices can be
used for model fitting. The loading vectors of PCA can be identified
using the eigendecomposition (ED) of the cross-product matrix XX =
XT ⋅ X. Similarly, the loadings and weights in PLS regression can be
identified from matrices XX and XY = XT ⋅ Y using the kernel
algorithm [33–35].

The computation of these cross-product matrices can be performed
in an iterative manner. This procedure assumes the data have been pre-
viously preprocessed, which can also be performed in an iterative fash-
ion. For the sake of generality and to reduce computational overhead,
the cross-product matrices are updated for each batch of observations
of size B, instead of for each single observation. The observation-wise it-
erative computation can be derived for B=1. The iterative computation
follows:

XXt ¼ XXt−1 þ XT
t � Xt ; ð6Þ
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