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We carried out a validation study of the orthogonal L-shaped PLS (OLPLS) method using chemogenomic data
based on adenosine receptor inhibitor activity measurements. Using OLPLS, the ligand and protein descriptors
could be connected to eight adenosine receptor inhibitor activities. The fingerprints representing specific chem-
ical substructures on the ligands were used as the ligand descriptors, while z-scales were used as the protein
descriptors. Three clusters were observed in the chemical and protein spaces from the predictive scores and load-
ings. From these, the predictive and orthogonal ligand structure fragments towards three adenosine receptors
could be successfully elucidated. The predictive fragment for the human adenosine 2A receptor was confirmed
by comparison to the X-ray crystal structure. As expected, the orthogonal fragments contained no physicochem-
ical features required for specific interaction with the adenosine receptors.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Until recently, drug discovery has long been a multi-disciplinary ef-
fort aimed at optimizing ligand properties such as potency, selectivity
and bio-availability towards single molecular targets. It is estimated
that out of the 25,000 human genes thought to encode the approxi-
mately 3000 druggable targets [1], only 800 of these protein targets
have been investigated by the pharmaceutical industry [2]. Moreover,
compared with the 10°° virtual ligand compounds present in various
databases, medicinal chemistry has provided only ten million chemical
structures, the latter using the technology of the miniaturization and
parallelization of compound synthesis [3]. Only a small fraction of the
ligands describing current chemical space have therefore been tested
on only a fraction of the entire protein space [4].

Chemogenomics is a relatively new inter-disciplinary field that
attempts to fully match target and ligand spaces, so as to ultimately
identify all potential ligands of all targets [5]. Chemogenomics has re-
ceived significant attention in the pharmaceutical industry because of
the discovery of new inhibitory ligands of various primary targets as
well as the potential unfavorable off-targets of various ligands that can
result in negative side effects. By common definition, chemogenomic
data comprises a two-dimensional matrix, where proteins are reported
as columns and ligands as rows, and where reported values are usually
inhibitor activities. The chemogenomic matrix can therefore be de-
scribed as two matrices consisting of ligand and protein descriptors.
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A bi-modal PLS approach, termed L-shaped PLS (LPLS), is used to
connect ligand and protein descriptors to their biological activities.
The LPLS approach explores relationships between the matrix columns
and rows by building bi-modal models [6]. Besides constructing a re-
gression model for the response matrix X; and the ligand matrix X5,
LPLS builds a further regression model connecting the weights or load-
ings of X; to the protein matrix, X3 [7,8]. Orthogonal LPLS (OLPLS) was
later developed by combining LPLS with the orthogonal concept [9]
for separating predictive and orthogonal variations from data sources;
variations that chemogenomic datasets inherently include [10]. This is
important from the point of chemical interpretation as it helps to miti-
gate the risk of over-fitting the data.

Many chemogenomic modeling studies have adopted a kernel
approach combined with a non-linear method and then chemical inter-
pretability is less biased [11,12]. Chemical interpretation is valuable for
generating hypotheses and knowledge, which are the final goals of mo-
lecular design. The OLPLS method may also prove suitable for chemical
interpretation, and the corresponding diagnostic plots could guide the
design of novel inhibitors against orphan protein targets. However,
OLPLS has only been applied to analytical chemical datasets thus far
[10], and has not yet been tested in chemogenomic studies focusing
on chemical interpretation.

In this paper, we validated the application of OLPLS to chemogenomic
data using adenosine receptor inhibitor activity data as the dataset. By
using OLPLS, we were able to connect the ligand and protein descriptors
to eight adenosine receptor inhibitor activities (towards the rat adeno-
sine 1, 2A, 2B, 3 and human adenosine 1, 2A, 2B, 3 receptors). For ligand
descriptors, we used the ECFP_6 fingerprints representing specific
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Table 1

SVR models for eight adenosine receptor targets. Num represents the number of
molecules with observed inhibitor activity towards the targets. C, Nu and Sigma are pa-
rameters in the SVR models. R? and Q? represent the squared and ten-fold cross-
validated correlation coefficient values, respectively.

No Targets Num C Nu Sigma R2 Q2

1 Rat_A1 2216 2 0.4 0.0313 0.823 0.608
2 Rat_A2A 2051 1 0.5 0.0313 0.824 0.656
3 Rat_A2B 803 1 0.6 0.0313 0.805 0.579
4 Rat_A3 327 2 0.4 0.0313 0.883 0.492
5 Human_A1 1635 2 0.4 0.0313 0.823 0.518
6 Human_A2A 1526 1 0.6 0.0313 0.863 0.645
7 Human_A2B 780 1 0.6 0.0313 0.863 0.635
8 Human_A3 1661 2 0.4 0.0313 0.866 0.602

chemical substructures. For protein descriptors, 27 z-scales representing
nine unique amino acids were used. We identified three clusters in the
chemical and protein spaces from the resulting predictive scores and
loadings. From this data, the predictive and orthogonal fragments on
the ligand structures required for association with three adenosine
receptors (human adenosine 2A, 2B, 3 receptors) were successfully
elucidated. The predictive fragment for human adenosine 2A receptor
(a furan ring) was confirmed by comparison to the X-ray crystal struc-
ture. As expected, the orthogonal fragments (methylene carbon or
ether oxygen) contained no physicochemical features required for
specific interaction with the adenosine receptors.

2. Materials and methods
2.1. Adenosine receptor inhibitor activity data

We used previously published inhibitor activity datasets for rat and
human adenosine receptors [13]. The inhibitor activity was represented
by the logarithm of the reciprocal K; value (pK;). Affinity towards the Al
receptor on HEK293 cell membranes was determined using [°?H]DPCPX
as the radioligand. Affinity towards the A2A receptor on CHO cell mem-
branes was determined using [2H]ZM241385 as the radioligand. Affinity
towards the A2B receptor on CHO cell membranes was determined
using [*H]PBS603 as the radioligand. Affinity towards the A3 receptor
on HEK293 cell membranes was determined using [*H]PSB11 as the
radioligand. Final established K; values were calculated using a nonline-
ar regression curve-fitting program. In total, 10,999 annotated data
points for eight adenosine receptors proved feasible. The 10,999 data
points were provided by Dr. Andreas Bender's group at the University
of Cambridge [13]. The number of experimentally determined data
points against each adenosine receptor is shown in the column labeled
‘Num’ in Table 1.

The complete inhibitor activity dataset was not available and there
were data missing for ligand molecules and adenosine receptor targets.
To fill in the missing elements in the inhibitor matrix, we performed a re-
spective support vector regression (SVR) analysis against each adenosine
receptor target [14]. The ECFP_6 fingerprints of chemical structures [15]

were used as input for SVR. The output from SVR is the predicted inhib-
itory activity of the chemical structure. The established SVR models were
used to predict the missing data for each adenosine receptor target. The
optimal parameters (C, Nu and Sigma) for each SVR model were deter-
mined by ten-fold cross-validation. For consistency, the observed inhib-
itor activity values were replaced by the predicted values. Table 1 shows
the statistical measures of the eight SVR models. In total, a full matrix of
4898 ligand compounds with potential activity towards eight adenosine
targets was constructed. The SVR analysis was performed using R scripts
on a Linux machine.

2.2. Ligand and protein descriptors

The ligand descriptors used in the OLPLS analysis were the ECFP_6
fingerprints [15]. These descriptors are the same as those used for
constructing the full adenosine receptor inhibitor activity dataset. The
10,000 fingerprints were generated by referring to a pre-defined sub-
structure dictionary. That is, where a molecule had a specific substruc-
ture, the corresponding bit was defined as one in 10,000 binary codes.
Otherwise, the corresponding bit was defined as zero. After setting the
binary codes, the bits below the variance of 0.05 were removed until a
final total of 33 bits remained.

Z-scales were used as the protein descriptors. Z-scales were initially
developed as descriptors of amino acids, and contain three variables la-
beled as z;, z; and z3 [ 16]. These parameters were determined by princi-
pal component analysis (PCA) of 29 physico-chemical parameters for all
20 natural amino acids. The first, second and third principal components
correspond in turn to z;, 2o, and zs. These are tentatively interpreted as
hydrophobic, steric, and electronic properties, respectively.

With the z-scales derived from the amino acids, the amino acid
sequences of the adenosine receptor proteins were translated into a
vector of numbers. Because the sequence of the active site of the recep-
tors can be aligned, comparisons of resulting vectors should directly
represent the protein variation between adenosine receptors. The z-
scales of each aligned sequence residue form the uniform protein de-
scriptor matrix. Among the 15 amino acid residues forming the active
site, six residues (AA_01, AA_02, AA_04, AA_06, AA_09, and AA_15)
are strictly conserved and were not included in the protein matrix. For
each of the nine variable amino acids, three z-scales were assigned
and a total of 27 z-scales were therefore used as protein descriptors.
Table 2 shows the protein descriptors representing the amino acid
residues of eight adenosine receptors.

2.3. OLPLS

The OLPLS approach was introduced by Lofstedt et al. in 2012 as a
method for exploring consistent patterns of co-variation between
three data matrices arranged in an L-shaped system, where X5 and X3
give additional descriptors of the columns and rows of X, respectively
[10]. OLPLS allows for studies of predictive and orthogonal variations
in both the column and row data. OLPLS takes advantage of this bi-
modal arrangement and allows the analysis and interpretation to

Table 2

Protein descriptors representing the amino acid residues of eight adenosine receptors. The one-letter symbols represent the amino acid residue notation.
Proteins AA_03 AA_05 AA_07 AA_08 AA_10 AA_11 AA_12 AA_13 AA_14
Rat_A1 E N L H Q K S I Y
Rat_A2A E N L H H A P M Y
Rat_A2B E N \% H D K K M N
Rat_A3 R S L S K I E M C
Human_A1 E N L H H K S T Y
Human_A2A E N L H H A L M Y
Human_A2B E N \%A H N K K M N
Human_A3 \ S L S E \ Q L Y
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