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The complexity of metabolic profiles makes multivariate chemometric techniques crucial for extracting mostly
significant information and offering biological insight. Partial least-squares discriminant analysis (PLS-DA) was
proven fruitful in metabonomic community, due to its promising properties. The issues of suboptimum and
overfitting, however, often occur in PLS-DA modeling. In the current study, particle swarm optimization (PSO)
was invoked to meliorate PLS-DA via simultaneously selecting the optimal variable subset as well as the associ-
ated weights and the best number of latent variables in PLS-DA, forming a new algorithm named PSO-PLSDA.
Combined with 1H NMR-based metabonomics, PSO-PLSDA compared with PLS-DA was applied to recognize
lung cancer patients from healthy controls. Relatively to the recognition rates of 86% and 65% for the training
and test sets yielded by PLS-DA, 99% and 85% were obtained by PSO-PLSDA. Moreover, several most discrimina-
tive metabolites were identified by PSO-PLSDA to aid the diagnosis of lung cancer, including lactate, proline,
glycoprotein, glutamate, alanine, threonine, taurine, glucose (α- and β-), trimethylamine, glutamine, glycine,
and myo-inositol.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Metabonomics, as a relatively newmember of ‘omics’ family, aims to
investigate the global metabolic variance in biological systems via
monitoring the levels of small molecule metabolites in biofluids and
biological tissues [1]. In a typically metabonomic experiment, metabolic
profiles of normal and abnormal groups are gained from high-
throughput analytical platforms, and then multivariate chemometric
tools are applied for executing metabonomic data analysis. Examples
of such analytical platforms are nuclear magnetic resonance (NMR)
spectroscopy andmass spectrometry. These platformshold great poten-
tial in assaying hundreds to thousands of metabolites at a single pass,
thus producing large datasets of rich variables. The multivariate tool
aims to establish an accurate recognition model relating the metabolic
profiles to the sample class memberships. Such tools must not only pre-
dict or classify well [2] but also offer good biological interpretation [3].
One of the prerequisites for biological interpretation is to define the
most important metabolic variables for the differentiation between
groups [3], e.g., regions of NMR spectra. Consequently, metabonomic
data analysis essentially contains the variable selection (i.e., biomarker
discovery) and pattern recognition (i.e., classification) [4,5].

In metabonomic datasets, some variables have no or little relevance
to the class memberships, confounding the modeling algorithms [6]. It
was evidenced that variable selection can enhance the performance of
algorithms even those that are inherently able to treat with high-
dimensional and collinear datasets, such as, principal component analy-
sis (PCA) and partial least-squares-based algorithms [6–9]. In addition,
variable selection can simplify themodel, in favor of identifying the im-
portant pathways and understanding the integrated system function.
Till now, with the increasing ease of measuring multiple variables per
sample, variable selection for data reduction and ameliorative interpret-
ability is gaining more and more attention in metabonomics [6,9,10].

PLS-DA provides remedial measures to the problems of correlated
inputs and limited observations, well catering for the characteristics of
the datasets in metabonomics [5,11]. It is a projection-based tool
which in principle should ignore the variable space spanned by irrele-
vant or noisy variables. However, actually, PLS-DAmight still be suscep-
tible to overfitting by introducing non-informative or irrelevant
variables that often existed in metabonomic datasets, weakening the
practical effectivity of PLS-DA in metabonomics. The discrimination re-
sults by PLS-DA will also be deteriorated by the excessive variables
and small objects [9]. These may be due to the fact that PLS-DA has an
incremental issue in searching the proper size of the relevant sub-
space of variable space when the variable number increases [12]. More-
over, the latent variable number for PLS-DA is typically identified by
cross validation (CV) method. For small datasets, CV will yield instable
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results. Extensive computation time will be needed for large dataset.
The properties of PLS-DA have led to a wealth of efforts in improving
PLS-DA [7,13]. Until now, variable selection in PLS-based algorithms
has attracted much attention [7,9,14,15]. This generic topic has been
reviewed by many investigators [9,16]. For instance, Mehmood et al.
[9] state that the combination of projection-basedmethodwith variable
selection technique enables the minimization of the influence of noisy
variables. However, the majorities have focused on the improvement
of the performance of PLS for regression tasks, i.e., PLSR. Only few stud-
ies dealing with variable selection in PLS-DA have been reported nowa-
days, [7,17] and even less for metabonomic applications.

In the current study, inspired by the characteristics of PLS-DA and
idiosyncrasies of metabonomic datasets, particle swarm optimiza-
tion (PSO) has been combined with PLS-DA, forming a new method
named PSO-PLSDA for executing the metabonomic data analysis.
PSO [18] as an optimization technique simulates a simplified social
system. It can carry out the real-number [19] and discrete issue
optimization [20] by using continuous and discrete versions of PSO,
respectively. In this paper, the most informative variables and opti-
mal latent variable number involved in PLS-DA have been optimized
by discrete PSO. Simultaneously, the optimization of associated
variable weights has been handled by continuous PSO. The variable
weight optimization is considered on the basis of the report by Yu
et al. [21] that appropriate variable weighting can further improve
the model performance.

Lung cancer is the primary cause of cancer death, as there are no
general screeningmethods and early stage tumors often cause no symp-
tom. Definitive diagnosis relies on cytology and histopathological study
of tissue biopsies. However, via evaluating the morphological changes,
histology offers no information on the altered metabolism in cancer
cells, the assay of which may be propitious to more accurate staging of
lung cancer. Moreover, for the preneoplastic lesions for which histopa-
thology is often inconclusive, the altered metabonomic signatures may
be in favor of the early determination of lung cancer. Nuclear magnetic
resonance (NMR) spectroscopy, as a powerful tool for analyzing the
chemical compositions of biological tissue extracts and biofluids,
shows extensive applications in studying human cancers and produces
interesting results [22–24]. Here, the proposed PSO-PLSDA algorithm
has been used for 1H NMR analysis of lung cancer metabolism based
on the serum samples, comparedwith the conventional PLS-DA. Results
have revealed that PSO can well optimize PLS-DA, in that it converges
quickly toward the optimal solution and PSO-PLSDA compares favor-
ably with PLS-DA in terms of the recognition rate. Moreover, a small
number of most discriminative variables were identified to aid the
diagnosis of lung cancer.

2. Theory

2.1. Partial least-squares discriminant analysis (PLS-DA)

Essentially, PLS-DA is PLS2 (with several dependent variables,
i.e., matrix Y), the theory and properties of which have been de-
scribed in literature [25]. Thus only a concise description about
PLS-DA is given here. PLS-DA aims to find latent variables in fea-
ture space that have a maximum covariance with Y. Linear combi-
nations of feature space variables are found, being rotated to have
maximal prediction capability for Y. The model can be formulated
as follows:

YN� J ¼ XN�PBP� J þ EN� J : ð1Þ

The subscriptN in Eq. (1) stands for the sample number, with P and J
representing the numbers of independent variables and classes, respec-
tively. X and E refer to the response and error matrices, respectively.

Each row in Y, i.e., yjT, represents the class membership of one sample.
It is coded as the following structure:

yTj ¼ 1 if sample belongs to class j
0 otherwise j ¼ 1;2;…; J:

�
ð2Þ

Such a structuremakesY a binarymatrix, the sumof each rowequal-
ing to unity. Each column in matrix B representing the regression coef-
ficient vector associatedwith each column inY can be obtained by PLS1,
i.e., the PLS-based algorithm suitable for only one dependent variable
[25].

For unknown samples, the classificationmatrix Yun can be computed
by the measured response matrix Xun and the obtained B:

Yun ¼ XunBP� J : ð3Þ

However, it is worth to note that Yun does not present such a struc-
ture indicated in Eq. (2). The predicted values are real numbers and a
conversion to the class memberships is needed. For instance, the ith
sample is assigned to the jth class membership when the maximal
value in the ith row of Yun is located in the jth index or position.

The variable weighting can be simply actualized by the following
formula:

XN�Pð Þnew ¼ XN�Pð Þold � diag wð Þ: ð4Þ

Thereinto, w is the weight vector for the variables. In consequence,
after variable weighting, Eq. (1) can be presented as follows:

YN� J ¼ XN�Pð ÞnewBP� J þ EN� J : ð5Þ

As forXun for the unknown samples, the same processing is handled.

2.2. Particle swarm optimization (PSO)

PSO [18], a stochastic global optimization method, simulates the so-
cial behavior of bird flock, exploring the problem space by a population
of particles. Each particle represents a single solution. In PSO, each
particle flies over the problem space with a velocity guiding the flying
of the particle, keeping track of the best solution encountered so far.
The relatively detailed description on PSO algorithm can be found else-
where [19]. Here a brief description of PSO is given as follows.

When PSO is used for the continuous optimization task, the position
and velocity of each particle are randomly initialized by distributing
themuniformly across the search space. The ith particle and its associat-
ed velocity, i.e. the change rate of the position for the ith particle, are
represented as Pari = (Pari1, Pari2, …, PariD) and vi = (vi1,vi2, …, viD),
respectively. In each cycle, each particle is innovated by following the
personal and global best positions. The former refers to the best previ-
ous position of the ith particle yielding the best fitness value, represent-
ed as pi = (pi1, pi2,…, piD), while the latter is the best particle among all
the particles in the population, represented as pg = (pg1, pg2, …, pgD).
Once the above-mentioned two best values have been found, the indi-
vidual updates its velocity and position in terms of the following two
equations:

vid newð Þ ¼ vid oldð Þ þ c1 � r1 � pid−Paridð Þ þ c2 � r2 � pgd−Parid
� �

ð6Þ

Parid newð Þ ¼ Parid oldð Þ þ μ � vid newð Þ ð7Þ

where both c1 and c2 take the integer value of 2 [19], named learning
factors; r1, r2, and μ, are random numbers uniformly distributed in
(0, 1). In Eq. (7), μ is the restriction factor to determine velocity weight.
The particle's velocity is renovated by employing Eq. (6) according to its
previous velocity and the distances of its current position from its
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