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As one of themost important and ubiquitous post-translational lipid modifications, protein palmitoylation plays
significant roles in a variety of biological processes, including signaling, neuronal transmission, and membrane
trafficking. Protein palmitoylation is a highly dynamic process, which regulates various protein functions. The dy-
namic nature of palmitoylation makes it very difficult to identify such kind modification by experimental assay
methods. Therefore, using computational approaches to identify palmitoylation sites is of highly important. In
this study, a new method was proposed to predict palmitoylation sites based on multi-amino acid properties
and random forest (RF) algorithm. The prediction accuracy, sensitivity, specificity, Matthews correlation coeffi-
cient (MCC) and area under the curve values (AUC) for current method were 91.85%, 88.89%, 94.67%, 0.8377,
and 0.9595, respectively. These results indicated that the current method was a powerful and effective tool for
identifying palmitoylation sites, which would be a complement to protein palmitoylation research. Furthermore,
a free online service was established in http://sysbio.yznu.cn/Research/RandomForcast.aspx.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Protein palmitoylation, also known as S-acylation, is one of themost
ubiquitous post-translational modifications (PTMs), which reversibly
attaching a 16-carbon saturated fatty acid as lipid palmitate (C16:0) to
cysteine residues in protein substrates through thioester linkage [1–3].
In addition protein palmitoylation is a reversible lipid modification
that plays important roles in cell signaling. Palmitoylation modification
can increase the hydrophobicity of proteins to promote protein-
membrane association [4–6]. Furthermore, palmitoylationmodifies nu-
merous proteins to control protein–protein interactions [7], intracellu-
lar trafficking [8], lipid raft targeting [9,10], and proteins' activities
[11–13]. Moreover, palmitoylation has been implicated in a variety of
biological and physiological processes, including signal transduction
[12,13], neuronal development [3], and apoptosis [14]. It is very obvious
that revealing the exact positions of palmitoylation sites in a protein se-
quence can elucidate many important biological processes such as pro-
tein folding, subcellular localization, protein transportation, functions,
and provide useful clues for drug design and other biotechnology
applications.

To date, several conventional experimental techniques (such as
mass spectrometry) for understanding the mechanisms of protein
palmitoylation and identifying the exact positions of palmitoylation
have been employed [15–17]. Although the protein palmitoylation
sites can be determined by these conventional experimental techniques,
the features of substrate specificity for palmitoylation are still unclear,
and most previous studies have proposed that there is no common
and canonical consensusmotif for palmitoylation [10]. These drawbacks
make experimental methods to determinate that palmitoylation sites in
proteins are still an expensive and laborious process; thus, it is highly
desirable to develop a fast, automated and effective computational
method to identify protein palmitoylation sites, in contrast with time-
consuming and expensive experimental methods.

Some computational methods have been developed to predict pro-
tein palmitoylation sites. Zhou et al., first employed a clustering and
scoring strategy (CSS) to build a model to predict palmitoylation sites
in 2006 [18,19]. Xue et al., applied a Naive Bayes method to predict
palmitoylation sites in 2006 [20]. Wang et al., using the composition
of k-spaced amino acid pairs as the encoding scheme, proposed a pre-
dictor called CKSAAP-Palm to identify the potential palmitoylation
sites [21]. Recently, Hu et al., proposed a predictor named IFS-Palm for
predicting palmitoylation sites based on the amino acid sequence fea-
tures. In these methods, the greatest total accuracy was 90.65% based
on IFS-Palm predictor [22]. Hence, the prediction accuracies were far
from ideal, itwas crucially important to develop some reliable computa-
tional methods for identifying protein palmitoylation sites.
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In this study, a novel approach was developed to identify
palmitoylation sites by couplingmulti amino acid properties with ran-
dom forest (RF). Seven amino acid physicochemical properties and
structural characteristic informationwere fused to form the feature var-
iables for classification. The influences of sequence extracting window
sizes, ratios between the number of positive sites and the number of
negative sites were optimized. The proposed algorithm obtained satis-
fied predictive results in identifying palmitoylation sites.

2. Materials and methods

2.1. Datasets construction and preprocessing

The dataset was constructed by the following steps: Firstly, 172 pro-
teins covering experimental palmitoylation cysteine were obtained by
searching the keywords “palmitoylated cysteine” from UniProtKB/
Swiss-Prot, which were not annotated as “by similarity”, “potential” or
“probable”; Secondly, among these proteins, 151 proteins were used
by Hu et al., [22]. And the remaining 21 proteins were new uploaded
in UniProtKB/Swiss-Prot, these proteins were used as independent
dataset in this study.

Then, we defined the cysteine (C) residues as central residues, and a
sequence fragmentwith 2n+ 1 amino acidswas constructed by taking n
upstream residues and n downstream residues from the cysteine residue
in each protein sequence. Here, the cysteine (C) palmitoylatedmodifica-
tion sites that verifiedby the experimentalmethodswere defined as pos-
itive data, while those did not verified by experimental methods were
defined as negative data; lastly, training dataset contained 144 experi-
mental palmitoylation sites (positive data) and 1268 non-experimental
palmitoylation sites (negative data). Moreover, to verify our method,
the remaining 21 protein sequences were selected as independent test-
ing dataset, which contained 33 experimental palmitoylation sites and
245 non-experimental palmitoylation sites.

2.2. Feature extraction and coding

In this study, the protein amino acid properties were chosen for res-
idue representation. A protein sequence can be represented as a series
of amino acids by their single-character codes A, C, D, E, F, G, H, I, K, L,
M, N, P, Q, R, S, T, V, W and Y, formulated as

R1R2R3R4R5R6R7R8…RL: ð1Þ

Suppose H(R1) is the hydrophobic value of the 1st residue R1, H(R2)
that of the 2nd residue R2, and so forth. In terms of these hydrophobic
values the protein sequence of Eq. (1) can be converted to a digit signal.
If we have chosen 10 as the slidingwindow size, each sequence fraction
would contained 21 residues, and then could be transformed into 21
digit features. After that the mean values for all the sequence fractions
were calculated. Therefore, the dimension of feature vector for each se-
quence was 22.

Each amino acid in peptides was encoded by 7 properties. These
properties included hydrophobicity, hydrophilicity, volume of side
chains, polarity, polarizability, solvent accessible, and net charge index
of side chains. The amino acid properties were available at AAindex
[23]. Therefore, the total number of input variables for a sequence was
154 (22 ∗ 7), when n equals to 10. In the current study, the window
length n was optimized from 4 to 12.

2.3. Random forest

Random forest (RF) is a classifier consisting of an ensemble of classi-
fication and regression tree-structured classifiers [24]. All trees in the
forest are unpruned. RF takes advantages of two powerful machine
learning techniques: bagging and random feature selection. In bagging,
each tree is trained on bootstrap samples of the training data, and

predictions aremade by themajority vote of the trees. RF is a further de-
velopment of bagging, which instead of using all features, it randomly
selects a subset of features to split at each node when growing a tree.
In order to assess the prediction performance of the random forest
algorithm, RF performs a type of a cross-validation in parallel with the
training step by using the so called OOB samples. The OOB samples
were used to get an unbiased estimate of the classification error as
trees were added to the forest. It was also used to get estimates of
variable importance. Specifically, in the process of training, each tree is
grown using some particular bootstrap samples. Since bootstrapping is
a sampling method with replacement from the training data, some of
the data will not be chosen to establish the training dataset or can be
called “left out”, while some samples will be chosen to train the model
many times. The ‘left out’ data is also called the “OOB sample”. On aver-
age, each tree is grown using about 2/3 of the training data, leaving
about 1/3 samples as OOB sample. Since OOB data have not been used
in the tree construction, it can be used to estimate the prediction perfor-
mance. The RF algorithm implemented in the R-package randomForest
wasused in this study [25]. The algorithm(for both classification and re-
gression) can be stated as follows:

1. Draw ntree bootstrap samples from the original data, ntree is the
number of ensemble trees, in the current study ntree is 500;
2. For all bootstrap samples, grow an un-pruned classification or re-
gression tree, with the following modification: at each node, rather
than choosing the best split among all variables, randomly select
mtry variables and choose the best split among those variables
(bagging can be thought as the special case of random forest when
mtry = p, the number of variables). In general,mtry is simply a num-
ber (positive integer) between 1 and p [24]. In the current study, the
value of mtry is 15.
3. Predict new data by aggregating the predictions of the ntree

(i.e., majority votes for classification, average for regression).

Variable importance: RF, as an ensemble of trees, inherits the ability
to estimate feature importance. Ameasure of how each feature contrib-
utes to the prediction performance of RF can be calculated in the course
of the training. The important scores can be used to identify biomarkers
or as a filter to remove non-informative variables. The frequently used
type of RF to measure feature importance is the mean decrease in clas-
sification based on permutation. For each tree, the classification accura-
cy of the OOB samples is determined both with and without random
permutation of the values to each variable, one by one. The prediction
accuracy of after permutation is subtracted from the prediction accura-
cy before permutation and averaged over all trees in the forest to give
the permutation importance value. In the current research, the mean
decrease in classification accuracy was accepted to measure variable
importance. The importance of each variable (j) can be calculated as
Eq. (2)

Importance of j ¼ Accuracyj normal–Accuracyj permuted: ð2Þ

2.4. Model training and evaluation

Theperformance of classifier classification has been evaluated by the
following measures [26]:

Specificity ¼ TN
TN þ FP

ð3Þ

Sensitivity ¼ TP
TP þ FN

ð4Þ

Precision ¼ TP
TP þ FP

ð5Þ
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