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This study explores the effect of noise propagation on the resolution capability of multivariate curve resolution-
alternating least squares with a recently developed quadrilinearity constraint (MCR-ALSQ). To investigate the
effect of application of the quadrilinearity constraint, four environmental profiles were simulated and three
types of noise viz. homoscedastic, heteroscedastic, and constant-proportional noise at three different levels
were added to the simulateddataset. The profiles recoveredwithMCR-ALSQwere comparedwith the ones recov-
ered by bilinearMCR-ALS (MCR-ALSB). The effect ofmaximum likelihood principal component analysis (MLPCA)
as a pre-processing step inMCR-ALSQ (MLPCA–MCR-ALSQ), andMCR-ALSB (MLPCA–MCR-ALSB) analysiswas also
studied and results were comparedwith ones obtainedwithMCR-ALSQ andMCR-ALSBmodels. The recovery and
similarity of the resolved profiles with theoretical ones were assessed in terms of similarity coefficient (r2) and
similarity angle (θ). The results of this study conclude that MCR-ALSQ is appropriate to analyze four-way
quadrilinear datasets, and that the use of MLPCA as a pre-processing step before MCR-ALSQ improves the
resolution profiles to a great extent even in the presence of high levels of noise (heteroscedastic, and constant-
proportional).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

MCR-ALS, a proven tool to solve themixture analysis problems, can be
used to analyze any dataset, consisting of either single or multiple data
matrices, described by a bilinear model [1]. Bilinear modeling solutions
for two-way datasets are usually associated with resolution ambiguities
and rank deficiency problems. This aspect can be improved significantly
when data structures containing richer information (like multi-way
data sets) are analyzed by the extension of multivariate curve resolution
methods [1,2]. In the case of multi-set and multi-way datasets, MCR-ALS
is applied on augmented data matrices and unique solutions can be ob-
tained more easily with the implementation of different constraints
such as non-negativity, closure, unimodality, selectivity, local rank and
trilinearity, depending on the data characteristics [3]. MCR-ALS using
data matrix augmentation schemes and implementation of constraints
during the alternating least squares (ALS) optimization canbe customized
according to the specific features of each data matrix allowing for the ful-
fillment of trilinear or multi-linear models [1]. In MCR-ALS analysis of
multi-way datasets, the multi-linear constraints can be applied indepen-
dently and selectively to each component of the dataset, providing more
flexibility to data analysis and allowing for multi-linear, partial-multi-

linear or mixed models [4,5]. Hence, MCR-ALS, can easily be adapted to
data sets of different complexities and structures, bilinear, trilinear or
multi-linear, providingoptimal least squares solutions [6]. After successful
extension and application ofMCR-ALS to analyze different kinds of three-
waydatasets using a trilinear constraint [3,4,7–9], thismethodhas recent-
ly been extended to analyze a four-way dataset using non-negativity and
a newly developed quadrilinear constraint [10].

Whenever, a new method or model is proposed for data analysis, it
needs to be validated and a practical approach to method validation is
to use datasetswith known characteristics or in otherwords, to use sim-
ulated data with known structure, characteristics, and noise [11–13].
Themain sources of uncertainty associatedwith curve resolution results
are the degree of rotation ambiguity of the recovered profiles and the
propagation of experimental noise [1], which need to be considered in
the quality assessment of the finally achieved results. Real life datasets
usually have someamount of noisewith specific characteristics depend-
ing on the origin of the dataset at hand to be analyzed. When these
datasets are processed and modeled with data analysis methods, prop-
agation of noise to resolved profiles may distort them significantly
resulting in erroneous interpretations of the obtained profiles. There-
fore, simulated datasets with structures as close as possible to real
datasets, with noise or error matrices of known characteristics can be
a good approach to validate the tested methods. Most of the bilinear
model based methods, including MCR-ALS, assume that the dataset to
be modeled has inherent noise which is independently and identically
distributed (i.i.d.) with approximately a normal (Gaussian) distribution
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to provide optimal solutions. This is a rather good approximation for ex-
perimental measurements obtained from spectroscopic and chromato-
graphic methods which are rather precise with low and relatively
uniform uncertainties [14]. On the contrary, in practice, this assumption
is often not fulfilled by large complex environmental datasets or DNA
microarray datasets [14–17]. As the measurement error variances
become non-uniform (heteroscedastic noise) the projection subspace
estimation for the given data matrix becomes suboptimal. Maximum
likelihood principal component analysis (MLPCA) has been used to
deal with these kinds of errors [18–20]. MLPCA is a generalization of
PCA to analyze data with non-ideal error structures that may range
from simple heteroscedascity to more complex structures [14]. The
use of MLPCA as an initial projection step in MCR-ALS analysis of noisy
data has previously been proposed and reported by Dadashi et al. [21].

This work explores the performance of MCR-ALS with a
quadrilinear constraint with respect to the different types of noise
and effects of noise propagation in the four-mode profiles of a four-
way dataset. For this research work, an environmental dataset with
four contamination sources was generated with theoretical profiles
based on a previous study [10] and different types of noise, viz.
homoscedastic, heteroscedastic, and constant-proportional noise
were introduced to the simulated quadrilinear dataset.

2. Methods

2.1. MCR-ALS method

TheMCR-ALSmethod has recently been extended to analyze and re-
solve the profiles for four-way data under a quadrilinearity constraint.
The details about the MCR-ALS method and its extension with a
quadrilinear constraint can be found elsewhere [1–3,10]. The first step
in the MCR-ALS algorithm is the projection of the original dataset into
a subspace defined by its principal components and initial estimates of
scores (U) or loadings (VT) [5,9,21,22]:

D̂F;PCA ¼ DV FV
T
F ð1Þ

here, VF is the PCA loading matrix for the F component and D̂F;PCA is the
projection of the original dataset onto a loading subspace.

After initial data projection, U and VT matrices are estimated itera-
tively using the ALS algorithm under desired natural constraints:

minÛ;constraints D̂F;PCA−ÛV̂T
��� ��� ð2Þ

Û ¼ D̂F;PCAV̂ V̂TV̂
� �−1 ¼ DF VT

� �þ ð3Þ

minV̂T
;constraints D̂F;PCA−ÛV̂T

��� ��� ð4Þ

V̂T ¼ ÛTÛ
� �−1

ÛD̂F;PCA ¼ UT
� �þ

DF: ð5Þ

The solutions obtained by ordinary PCAorMCR-ALS are only optimal
in case of independent and identically distributed (i.i.d.) errors or
random homoscedastic errors [16–18]. This assumption cannot be
made in general and is not satisfied when relatively large uncertainties
in the measurements are present and they are proportional to the
values. In these cases, the MLPCA projected dataset can be used for
MCR-ALS analysis. The MLPCA method accounts for known measure-
ment errors in the estimates of model subspace parameters and it can
deal with different types of error structures, which is not the case with
PCA. The method is first presented in terms of a classical measurement
error regression model and then transformed to principal component

space to provide a closer relationship with PCA [18]. By making optimal
use of measurement errors, it separates measurement noise variance
from other sources of variance and therefore gives amore accurate esti-
mation of the component subspace than PCA based methods. MLPCA as
a pre-processing step can improve the quality of results, if reasonably
accurate measurement of noise are provided [14,18–20].

The main purpose of this work is to analyze the stability and resolu-
tion of four-way profiles recovered byMCR-ALS under a quadrilinearity
constraint in the presence of different types and amounts of noise. For
this, four variants of the MCR-ALS model, based on the constraints
applied and the use of MLPCA as a pre-processing step were used to in-
vestigate the efficiency of the MCR-ALS resolution method against the
introduction of different noise levels and patterns in the dataset. These
models can be described as following:

(i) MCR-ALSB: ordinary MCR-ALS without any multi-linearity
(trilinearity or quadrilinearity) constraint but still models the
bilinearity assumption and non-negativity constraints,

(ii) MLPCA–MCR-ALSB: MCR-ALSB applied on MLPCA projected
dataset,

(iii) MCR-ALSQ: MCR-ALS with quadrilinearity and non-negativity
constraints, and

(iv) MLPCA–MCR-ALSQ: MCR-ALSQ applied on MLPCA projected
dataset.

The simulated datasets with homoscedastic noise were modeled
with the MCR-ALSB, and MCR-ALSQ only, whereas, the datasets with
heteroscedastic, and constant-proportional noise were modeled with
the MCR-ALSB, MLPCA–MCR-ALSB, MCR-ALSQ, and MLPCA–MCR-ALSQ
models. To check the efficiency of MCR-ALS methods to resolve true
profiles from noisy data, the obtained R2 (variance explained) and lof
(lack of fit) values were compared with the theoretical ones (lofth and
R2

th), and, also the obtained profiles were compared with theoretical
ones (those used for data simulation).

2.2. Implementation of the quadrilinearity constraint in MCR-ALS

The MCR-ALS model for a four-way dataset ‘DIJKL’, of dimensions I, J,
K, and L in the 1st, 2nd, 3rd, and 4th modes respectively, augmented in
column-wise manner (Daug) can be represented as:

Daug ¼ UaugV
T þ Eaug ð6Þ

where, Uaug is the augmented scores matrix containing loadings for the
first, second and third mode, VT is the loading matrix for the second
mode, and Eaug is the error term. Schematic representation of the
quadrilinearity constraint implemented in the MCR-ALS model to ana-
lyze the four-way dataset is provided in Fig. 1. In brief, the quadrilinear
constraint is applied during the ALS optimization of the augmented
scores matrix (Uaug). As in any other ALS procedure, the first step is to
provide the number of components and an initial estimation of either
scores (Uaug) or loading (VT) matrices. These initial estimates are then
optimized iteratively by ALS optimization and at each iteration a new
estimation of the augmented scores and loading matrices is obtained.
At each iteration different constraints like non-negativity, normalization
(of second mode loadings VT) and quadrilinearity (optional) are intro-
duced. The constrained iterative optimization is carried out until
convergence is achieved or until a preselected number of cycles are
reached. The quadrilinear constraint, in MCR-ALS can be applied inde-
pendently and optionally to each component of the data set, giving
more flexibility to the whole data analysis and allowing to test for full
and partial quadrilinear models. Further details can be found elsewhere
[10]. The whole procedure is shown schematically in Fig. 1 and can be
summarized as follows:

(1) First, the bilinear model decomposition of the augmented data
‘Daug’ is performed according to Eq. (6).
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