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This article describes several linear pretreatments based on orthogonal projections. The main differences of
these pretreatments lie in the way the information to be removed are identified, using calibration dataset,
pure spectra, experimental designs or mathematical models. Removing all the undesired spectral information
yields spectra proportional to the net analyte signal, so it is important to collect the most complete informa-
tion possible, using the complementarities of different approaches. The correction should then be processed
with a single Euclidian orthogonal projection that gathers all the information, rather than with successive op-
erations. By embedding Euclidian orthogonal projections into the calibration, it is not necessary to reapply
them to new datasets.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Spectroscopy has spread throughout many industries as an on-line
process control tool because calibration models are able to extract
quantitative information about a compound of interest from the spec-
tra. Among the models proposed, regressions or inverse calibrations
such as partial least square regression (PLSR) [1], extract the relevant
spectral information by means of a calibration dataset. The term
"partial" recalls that just a few dimensions or latent variables are
used, and thus the information related to the other variables is
dropped. Pretreatments or preprocessings are positioned prior to
calibration. Their purpose is to identify and to remove spectral infor-
mation that interferes with the desired prediction. Pretreatments and
regressions share a same objective, so pretreatments allow regres-
sions to perform better. Many different pretreatments are available.
This paper focuses on describing the ones based upon orthogonal pro-
jections and complements a recent review by Rinnan et al. [2]. After
introducing the notations, we describe several pretreatments focused
on orthogonal projections, and then discuss their properties. We pro-
pose a clarified view of several pretreatments by putting forward
their resemblances and complementarities and suggesting the best
methods for their use. The detailed relationships of these pretreat-
ments with other pretreatments (e.g. Savitsky–Golay (SG), standard
normal variate) and with other calibration methods are outside the
scope of this article.

1.1. Notations

Vectors are noted in bold lowercase, matrices in bold uppercase,
and scalars in uppercase characters. Vectors are arranged in columns,
except in matrices X and XG where the lines represent the spectra.
The transposed forms of vector a and matrix A are noted a′ andA′, re-
spectively. The main notations are gathered in Table 1, and a glossary
is also available in Table 2.

2. Pretreatments based on orthogonal projections

Pretreatments based on orthogonal projections deal with the cor-
rection of additive effects. For example, suppose that for sample i the
observed spectrum xi, obs is the sum of the expected spectrum xi plus
an unwanted contribution hi:

xi;obs ¼ xi þ hi ð1Þ

If a good estimation of hi is available, the first possibility would be
to perform a subtraction, and so xi is estimated as:

x̂i ¼ xi;obs−ĥ i

Unfortunately, because hi is not well estimated for each spectrum
i, this configuration is very uncommon in spectrometry. Nevertheless,
it is possible to obtain a good estimation of the subspace εD spanned
by the different vectors {hi}. Thus it becomes possible to build a pro-
jector orthogonal to this subspace. Let P be a matrix of dimensions
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P×A whose column-vectors {p1, p2, …pA} form a basis of εD. Let IP be
the identity matrix of dimensions P×P. The Euclidian orthogonal
projector to P is:

P⊥
P ¼ IP−P P′P

� �−1
P′

A spectrum xi, corr corrected from the information due to any hi is
obtained after a projection of xi, obs orthogonally to P:

xi;corr ¼ P⊥
P xi;obs ¼ P⊥

P xi ð2Þ

Note that the vector xi, corr that is obtained after an orthogonal
projection is very different from x̂i obtained when a subtraction is
possible. However in both cases, the influence of hi has been reduced
to nought. The orthogonal projector P⊥

P is symmetrical: P′ ⊥
P ¼ P ⊥

P , so
for N spectra forming the matrix X of dimensions N×P:

Xcorr ¼ XP⊥
P ¼ X IP−P P′P

� �−1
P′

� �
ð3Þ

The performances of the different pretreatments are directly
explained by their ability to obtain a good approximation of a basis
of εD. Different approaches are possible: using pure spectra, informa-
tion extracted from experimental design, models, and calibration
datasets. For each method, matrix X represents centered or uncen-
tered data, depending on the centering option chosen. In order to
simplify the presentation, all pretreatments presented here are for
correcting spectra in which just one compound of interest is to be
quantified. However, some pretreatments can also be written for
the correction of several compounds of interest.

2.1. Pretreatment using pure spectra

A basis of the space spanned by chemical components is given by
their pure spectra. A method derived from hyperspectral imaging
uses this property.

2.1.1. Orthogonal subspace projection
The orthogonal subspace projection (OSP) uses pure spectra,

called undesired signatures, which are associated with all the chemi-
cal influences present except the one of the compound of interest.
These undesired signatures form matrix K. They can be determined
after a clustering process [3,4], in which homogeneous groups of
spectra are obtained, followed by selection of a spectrum representa-
tive of each group. However in Harsanyi et al. [5] they were chosen
within the image. The OSP correction is a projection that is orthogonal
to K, in accordance with Eq. (3):

XOSP ¼ X IP−K K′K
� �−1

K′
� �

In Harsanyi et al. [5], the OSP method was applied to a hyperspec-
tral image from an airborne VIS-IR spectrometer using the radiance
spectra directly. Several end members were identified and alterna-
tively chosen as the compound of interest. An OSP was performed
for each endmember. For each OSP, the corrected spectra were used
to classify the pixels, and the results were in accordance with the
measured values, or ground truth. However, the limits of this method
are such that all the pure spectra must be known in advance and they
cannot be collinear. In addition, influences such as temperature are
not taken into account.

2.2. Pretreatments using spectra issued from an experimental design

If pure spectra are not available due to the chemical complexity of
the samples or because the influence to be removed is physical and no
pure spectrum exists, OSP cannot be applied. It is possible to con-
struct experimental designs to obtain a matrix XG whose spectra con-
tain targeted spectral perturbations without any useful information. A
singular value decomposition (SVD) or a principal component analy-
sis (PCA) applied to XG gives a matrix of eigenvectors P of dimensions
(P×A) whose columns represent an orthonormal basis of the sub-
space to be removed. The matrix X is corrected to Xcorr by a projection
orthogonal to P. The following formula is the same as Eq. (3) and can
be simplified to:

Xcorr ¼ X IP−P P′P
� �−1

P′
� �

¼ X IP−PP′
� �

Several methods have been based on this principle, but they differ
in the way XG is obtained, and in how the dimension of the SVD or the
PCA applied to XG is determined.

2.2.1. Independent interference reduction
The independent interference reduction method (IIR), Hansen [6]

uses spectra from samples where the compound of interest is null and

Table 1
Main notations.

X Matrix N×P, N samples and P spectral variables
y Vector N×1, the reference values
X1: i Projection of X orthogonally to {t1, t2, …ti}
T Matrix N×A, scores for X
P Matrix P×A, loadings for X
W Matrix P×A, weights for X
Σ Moore–Penrose pseudo-inverse of X′X

� �
; Σ ¼ X′X

� �þ

IN, IP Identity matrices for RN and RP spaces
PP Euclidian orthogonal projector P×P onto P; PP ¼ P P′P

� �−1
P′

P⊥
P Euclidian projector P×P orthogonally to P; P⊥

P ¼ I−PP

ti ieme column vector of T
pi ieme column vector of P
wi ieme column vector of W
εX Subspace of RP spanned by the line vectors of X
εU, εD Useful/detrimental subspaces of RP

Table 2
Glossary.

BB Best basis
CPSA Constrained principal spectra analysis
DFT Discrete Fourier transform
DO Direct orthogonalization
DOP Dynamic orthogonal projection
DOSC Direct orthogonal signal correction
DWT Discrete wavelet transform
EMSC Extended multiplicative signal correction
EPO External parameter orthogonalization
EROS Error removal by orthogonal subtraction
IIR Independent interference reduction
MSC Multiplicative signal correction
MDL Minimum description length
NAP Net analyte preprocessing
NAS Net analyte signal
NSV Net sensitivity vector
OPLS Orthogonal projection to latent structures
OSC Orthogonal signal correction
OSP Orthogonal subspace projection
PCA Principal component analysis
PCDA Principal component discriminant analysis
PLSR Projection to latent structures regression
RMSEP Root mean square error of prediction
SG Savitsky–Golay
SNV Standard normal variate
SVD Singular value decomposition
TOP Transfer by orthogonal projection
WPT Wavelet packet transform
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