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This paper focuses on multi-way PLS for discrimination. Emphasis was placed on the computation of parameters
(so-called scores and loadings) using an iterative procedure called tri-linear PLS2. In the context of discrimina-
tion, this algorithm is applied to a dummy matrix representing group membership, and according to its specific
formalism, the tri-linear PLS2 procedure offers the possibility of simplification. The purpose of this paper is to
introduce a compact formulation of the tri-linear PLS2 procedure adapted for a discrimination setting. A property
of this variant that allows formally establishing its convergence and, by extension, the convergence of the
tri-linear PLS2 will be demonstrated. The potential of this compact form will be illustrated with simulated
examples.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Chemometricians frequently address discrimination or classifica-
tion issues. Usually, the dataset to be analyzed can be viewed as a
matrix where I samples (or rows) are divided into G classes or
groups related to an (I, 1) categorical variable y. The J columns of X
describe measurements or quantitative variables. For convenience,
the rows of X can be permuted such that the I1 first rows correspond
to the first group and the following I2 rows correspond to the second
group, etc.

Partial Least Squares Discriminant Analysis (PLS-DA) is a very popu-
lar method to discriminate or classify different groups of samples.
PLS-DA consists of a classical PLS regressionmodel [1] inwhich themul-
tivariate response data are replaced by a dummymatrix Y that describes
the categories. The dummy matrix defines the class membership of the
statistical units; i.e. the matrix Y is of dimension I × G, where G is the
total number of groups and yig is equal to 1 if the ith observation belongs
to gth group and is equal to 0 otherwise.

PLS-DAwas properly formalized by Barker and Rayens [2], who pro-
vided a formal statistical background to describe the PLS regression
properties in the particular case of discrimination. Subsequently, exten-
sions and variants of PLS-DA were then proposed [3–6] and have been

widely used in various application areas, such as food science, image
analysis, and process monitoring [7–13].

Currently, data generated bymodern analytical devices such as sep-
aration technique coupled with mass spectrometry detection and ad-
vanced spectroscopic approaches are often very large. In some cases,
these data can be summarized meaningfully in a multi-dimensional
data structure calledmulti-way data or tensor. For example, monitoring
biological or chemical phenomena over time is especially important in
the life sciences. The data generated (or observed compounds) can
classically be arranged in a three-way table (or third-order tensor) of
size (I, J, K) consisting of I samples (or individuals) described by J com-
pounds (or detected analytes) and measured at K different points in
time [14] (see Fig. 1).

When different situations or modalities have to be compared, the
most commonprocedure for classifying samples from the original struc-
ture is to unfold (or matricize) the three-way data into two-way arrays
and apply traditional multivariate tools for classification, typically PLS-
DA. However, altering the organization of the data in this way intro-
duces the risk of losing information. Recently, several works have used
an alternative approach that is applied directly on a three-way table to
avoid the unfolding process [15–17]. This modeling strategy is based
onmulti-way Partial Least Squares regression (N-PLS),whichwas intro-
duced by Bro [18]. For discrimination, a dummymatrix of groups is used
as a response variable, as previously described for the conventional two-
way case. Similar or better results were obtainedwith N-PLS in compar-
ison with the unfolding strategy. More importantly a significant gain in
terms of interpretation was reported because there were fewer param-
eters to evaluate [14].
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The main issue motivating this study is the computation of N-PLS
parameters (scores and loadings) in the specific case of discrimination
(N-PLS-DA), based on an iterative procedure called tri-linear PLS2
[18]. In this context, the procedure is applied to a dummy matrix Y,
and the tri-linear PLS2 procedure offers the possibility of simplifications
according to its particular form.

This paper introduces a compact form of the tri-linear PLS2 proce-
dure that is adapted to the discrimination Scheme. Amonotony proper-
ty of the compact formulation is demonstrated and shows its
convergence and therefore, the convergence of the tri-linear PLS2.
These contributions are illustrated using simulated examples.

This paper is organized as follows: Section 2 summarizes notations
and basic definitions from tri-linear algebra; Section 3 provides a brief
presentation of Bro's multi-way PLS regression; and Section 4 focuses
on the discrimination case and introduces the compact form of the tri-
linear PLS2 procedure. The properties of this compact procedure in
terms of monotony and convergence are also established.

2. Notations

Various notations have been used to describe the multi-way PLS
regression method. Bro's presentation is based on matrix notation,
while Smilde [19] uses Kronecker product notation [20]. This paper
follows a description of the multi-way PLS regression method
based on n-mode product notation [21,22]. This choice appears to
be more rigorous and uses fewer indexes compared to the others
methods of notation.

This section summarizes the basic definitions and notations required
in subsequent developments. Matrices and third-order tensors are in
uppercase bold and vectors are in lowercase bold.

2.1. Basic definitions

• Let a, b and c be the three real vectors of size (I × 1), (J × 1) and (K×1)
respectively, a third-order tensor X is rank one if it can be written as
the outer product of three vectors, i.e., X = a○b○c. The symbol “○”

represents the vector outer product. This means that each element
of the tensor is the product of the corresponding vector elements:
xijk = aibjck.

• Let X and eX be the two tensors of size (I, J, K). The scalar product of

two third-order tensors is denoted by X; eXD E
and computed as a

sum of element-wise products over all indices; that is, X; eXD E
¼

∑
I

i¼1
∑
J

j¼1
∑
K

k¼1
xijkexijk . The scalar product allows the norm of a third-order

tensor X to be defined as:

Xk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
X;Xh i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

i¼1

XJ

j¼1

XK
k¼1

x2ijk�
vuut

2.2. n-mode products

To multiply a third-order tensor by a vector or a matrix, it is neces-
sary to specify the corresponding tensor mode (or way).

1- The 1-mode productX�1uof a third-order tensorX of size (I, J, K) by
an I-vector u is a matrix M of size (J, K) with elements:

mjk ¼
XI

i¼1

xijkui 1≤ j≤ Jð Þ and 1≤k≤Kð Þ:

In the samemanner, the 2-mode productX�2u of a third-order ten-
sor X of size (I, J, K) by a J-vector u is a matrix M of size (I, K) with
elements mik ¼ ∑

J

j¼1
xijk u j . Similarly, the 3-mode product X�3u of a

third-order tensor X of size (I, J, K) by a K-vector u is a matrix M of

size (I, J) with elementsmij ¼ ∑
K

k¼1
xijkuk (see Fig. 2 for a graphical rep-

resentation of the n-mode product).
2- The 1-mode product X ×1 U of a third-order tensor X of size (I, J, K)

by a matrix U of size (L, I) is a third-order tensor X̂1 of size (L, J, K)
with elements:

x̂ljk ¼
XI

i¼1

xijkuli with 1≤ l≤Lð Þ; 1≤ j≤ Jð Þ and 1≤k≤Kð Þ:

In the samemanner, the 2-mode productX×2U of a third-order ten-
sorX of size (I, J, K)with amatrixU of size (L, J) is a third-order tensor X̂2

of size (I, L, K)with elements x̂ilk ¼ ∑
J

j¼1
xijkulj. Similarly, the 3-mode prod-

uct X ×3 U of a third-order tensor X of size (I, J, K) with a matrix U of size

(L, K) is a third-order tensorX̂3 of size (I, J, L)with elements x̂ijl ¼∑
K

k¼1
xijkulk

(see Fig. 3 for a graphical representation of the n-mode product).

3. Brief presentation of Bro's N-PLS regression

The following definition is necessary to explore the systematic vari-
ation patterns in a three-way data set X of size (I, J, K), which are likely
to predict the systematic variation patterns in Y, a response data matrix
of size (I, Q) (Y is not necessarily a dummy matrix). The multi-way PLS
regression model for the mean-centered data X and Y is defined as:

X¼
XH
h¼1

tX;h∘aX;h∘bX;h þ R Hð Þ
X ð1Þ

Y ¼ T Hð Þ
X B Hð Þ þ R Hð Þ

Y ð2Þ

In Eq. (1) tX,h denotes the so-called X-scores; aX,h and bX,h indicate
the X-loadings associated with the second and third mode, and RX

(H)

denotes the residual part.

Fig. 1. Classical three way data X generated in time series.
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