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This paper proposes the use of a nonparametric permutation test to assess the presence of trends in the residuals
of multivariate calibration models. The permutation test was applied to the residuals of models generated by
principal component regression (PCR), partial least squares (PLS) regression and support vector regression
(SVR). Three datasets of real cases were studied: the first dataset consisted of near-infrared spectra for animal
fat biodiesel determination in binary blends, the second one consisted of attenuated total reflectance infrared
spectra (ATR-FTIR) for the determination of kinematic viscosity in petroleum and the third one consisted of
near infrared spectra for the determination of the flash point in diesel oil from an in-line blending optimizer
system of a petroleum refinery. In all datasets, the residuals of the linear models presented trends that have
been satisfactorily diagnosed by a permutation test. Additionally, it was verified that 500,000 permutations
were enough to produce reliable test results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Residuals inmultivariate calibration are estimates of the experimen-
tal error obtained by subtracting the reference from the predicted
responses. The predicted response is calculated from the model after
all regression parameters have been estimated from the experimental
data. The residual is defined by Eq. (1):

ei ¼ yi−ŷi ð1Þ

where ŷi is the predicted value, yi is the reference value and ei is the
residual for the sample i.

In correctly adjusted calibration models, it is expected that the
residuals remain roughly uniform in size as the measured value
increases and is normally distributed about zero. A poor fit of the
model reflects trends in their residuals, where relevant information
has not been incorporated into the model.

The presence of trends in regression residuals can be assessed using
graphics of the residuals with the reference values. Fig. 1a provides an
example of the residuals in a set of one hundred points in which no
trends can be detected. It is possible to note that no systematic error is

present when analyzing the distribution shown in Fig. 1b. The same
dataset is presented in Fig. 1c, where a simple visual observation is
enough to diagnose trends in the residuals. The difference between
the datasets depicted in Fig. 1a and Fig. 1c is the order in which the
residuals appear. A systematic residual test is not suitable for this
comparison because the data appear to be symmetrically distributed
around zero and the residuals follow a quadratic trend.

Due to the importance of residual analysis inmultivariate regression
models, this paper proposes a nonparametric permutation test [1,2] to
assess the presence of trends in residuals. An advantage is that permu-
tation tests are distribution-free, which means that no assumptions
about normality or homoscedasticity are required. In recent years, per-
mutation test methods have been increasingly applied to multivariate
problems in analytical chemistry. These methods have been applied to
identify significant effects in experimental designs [3], compare the
predictive accuracy of differentmodels [4] and conduct variable selection
in multivariate calibration [5,6].

2. Methods and data

2.1. Permutation test

The permutation method is a repetitive reordering of N entries in
the reference variable y. The elements in the original y variable are
reordered, thereby creating new response variables just by switching
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their internal positions. The new permuted y variable should have
no or very limited association with the predicted residual of the
calibration [6]. Consider the following example: using only the
numbers 1, 2 and 3, it is possible to form six sets by reordering
the elements, and these sets will differ only in the order of their
contents. The first is the orderly set A ¼ 1; 2; 3f g; the other five
sets are Ap

1 ¼ 1; 3; 2f g, Ap
2 ¼ 2; 1; 3f g, Ap

3 ¼ 2; 3; 1f g, Ap
4 ¼

3; 1; 2f gandAp
5 ¼ 3; 2; 1f g. The possible number of permuta-

tions increases with the number of elements. The number of combi-
nations is given by N! (where N is the number of elements). In a set
with 4 elements, it is possible to obtain 24 permutations; with 10
samples, 32,628,800 permutations are possible.

Non-parametric tests have some advantages compared to paramet-
ric tests, such as the exemption of the assumption of data normality.
Non-parametric tests are also simpler in execution, and the p-value is
exact if the permutation is tested a reasonable number of times.

The non-parametric permutation test applied to evaluate trends in
residuals is based on the randomization values of the vector y (variable
with reference value) while keeping the order of X data constant
(instrumental variables).

The first step is to define the hypotheses used to check for biased
errors:

a) Null hypothesis or H0: the prediction residuals ei are independent
of yi;

b) Alternative hypothesis or H1: the prediction residuals ei are
related with yi according to the following equation:

ei ¼ g yið Þ þ εi ð2Þ

where εi is an independent random error and g(yi) is some polynomial
function that can model the relationship between the residuals and the
reference values. It presents the following form:

ei ¼ bny
n
i þ bn−1y

n−1
i þ…þ b1yi þ b0: ð3Þ

In the alternative hypothesis, the dependence of the residuals with
reference values is proposed, and it is assumed that the entire effect of
randomness present in yi is due only to the random variableεi.

There will be evidence of trends in the residuals if the highest
polynomial coefficient bn in Eq. (3) is greater than zero if bn is positive
or less than zero if bn has negative value at the significance level of
probability assumed (we arbitrarily use the value of 0.05). For any
equation g(yi), only the highest polynomial coefficient is tested. The
algorithm is summarized as follows:

i. calculate the bn polynomial coefficient from the adjustment of the
original residuals in the function of the reference values. Here, it is
called bn⁎.

ii. randomly permute only the vector y;
iii. calculate the bnk coefficient for the kth permuted y;
iv. compare bn⁎ with bnk;
v. repeat steps (ii) to (iv) K times.

If the distribution of residuals is random around zero, the bn⁎

coefficient belongs to the random distribution of bni calculated from
the permuted y. The p-value of the test is determined by the propor-
tion of the number of times where bn⁎ N bni . When the p-value for the
test is smaller than the level of significance adopted (α = 0.05),
there is no evidence to accept H0, and the residuals are not random.
Otherwise, H0 is accepted, and there are no trends in the residuals.
The Matlab code for the proposed permutation test algorithm is
presented in Appendix A.

2.2. Multivariate calibration methods

The permutation test was applied in the residuals of three real-
world datasets from three multivariate calibration methods: principal
component regression (PCR) and partial least squares (PLS) regression,
and support vector regression (SVR).

2.2.1. Principal component regression
The general form for the linearmodels (PCR and PLS) can bewritten

as

y ¼ Xbþ e ð4Þ

where X is the matrix of instrumental data (spectra), b is the vector of
the regression coefficients and y is the vector of the reference values.

Fig. 1. Simulated residuals with a normal distribution, average of zero and unit variance: (a) no trends in residuals; (b) histogram of residuals without trend; (c) residuals presenting a
quadratic trend; (d) histogram of residuals with trend.
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