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This article introduces an error-in-variable (EIV) data structure for process monitoringmodels, that assumes the
presence of source variables that can be correlated and uncorrelated to the system response variables. To identify
such models, the paper proposes a different objective function for the projection to latent structure (PLS) ap-
proach. Compared to existing work, this modified PLS formulation does not remove uncorrelated, or orthogonal,
components from the predictor set prior to the identification of a PLSmodel nor identify an initial PLSmodel and
carry out a subsequent extraction of various correlated and orthogonal components from the predictor set. The
proposed PLS algorithms extract latent components to predict the system response variables as accurately as pos-
sible after estimating the error covariancematrices using amaximum likelihood algorithm that is also introduced
in this article. A detailed analysis of this extended PLS framework yields that the objective function is an iterative
maximum redundancy formulation. The article finally shows that the developed algorithms here are computa-
tionally more efficient than existing PLS-based approaches.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few decades, principal component analysis (PCA) and
PLS have gained significant attention for monitoring complex systems
[1–6]. Both are modeling tools and a core part of the multivariate
statistical process control (MSPC)methodology. Based on its conceptual
simplicity, however, most reported MSPC applications utilize PCA. One
problem is that PLS applications are not well understood. For example,
it relies on the assumption that the predictor variables are noise free
[6], which is a restriction of generality:

x ¼ As y¼C�sþf: ð1Þ

Here, x∈ℝnx and y∈ℝny represent the predictor and response sets,
respectively, f∈ℝny is an error vector, s∈ℝn stores n≤ nx source signals
describing common cause variation and A∈ℝnx�n and C�∈ℝny�n are
parameter matrices.

The assumption for the data structure in Eq. (1) includes E f 2i
n o

≪E

c�Tj s
� �2� �

for all 1≤ i, j≤ ny, where c�Tj is the jth row vectors of C⁎ and

E{·} is the expectation operator. Furthermore, the random variables
stored in s and f (i) are Gaussian distributed, (ii) possess no serial

correlation, (iii) are statistically independent and (iv) E{s} = E{f} = 0.
Offset terms x and y can be added to the predictor and response
sets, that is xM ¼ x þ x and yM ¼ y þ y, to describe the recorded vari-
ables, denoted by the subscript M. The first aim of this article is to re-
move the noise-free assumption for the predictor variables.

In contrast, PCA assumes that each process variable included in the
analyzed data set is corrupted by an error term, that is, z = Ds + g
[6–8]. Here, z∈ℝnz is a data vector, D∈ℝnz�n is a parameter matrix
and g∈ℝnz is an error vector. It is important to note that assuming
each of the recorded process variables is corrupted by an error term is
practically more relevant than the restricted assumption that only the
system response set is affected by errors.

For process monitoring, PLS extracts n sets of latent variables (LVs)
that allow constructing a number of non-negative quadratic statistics
[6]. Successful applications involving PLS include Refs. [9–13]. For PLS
models, the response set typically includes product quality and safety
critical variables, while the predictor set contains variables that are
expected to directly affect the response set and other recorded variables
describing common cause variation.

Besides the noise-free assumption of the predictor set, the data
structure in Eq. (1) is practically too restrictive for a second reason. It
does not cover cases where some of the predictor variables are uncorre-
lated to the response variables. An example of this is the presence of
controller feedback, which maintains key process variables affecting
product quality at predefined set-point values.

In the presence of measured or unmeasured disturbances, some
manipulated variables may not directly affect product quality, which
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follows from the aim of the control system to isolate the effect of
disturbances upon product quality. Consequently, the common cause
variation captured in the predictor variables may be divided into varia-
tion that is correlated and orthogonal to the response set. The second
aim of this article is to introduce an error-in-variable EIV data structure
that includes both types of source signals.

Addressing both aims together requires the introduction of the
following and more generic data structure for PLS models:

x ¼ As1 þ Bs2 þ e y¼Cs1þf: ð2Þ

Here, s1 ∈ℝn and s2 ∈ℝm are vectors storing source signals that are
correlated and uncorrelated, or orthogonal, to the response variables,
respectively, e is an error term and n + m ≤ nx. If n + m = nx Eq. (2)
presents the well-known EIV formulation for least squares prob-
lems [14]. It is important to note that PCA cannot extract latent compo-
nents which discriminate s1 from s2. It is also important to note that the
data structure in Eq. (2) can be rewritten to reduce to the PCA data
structure, which Section 2 of this article shows.

On the basis of the assumption that e= 0 and for the application of
near-infrared spectra, Wold et al. [15] developed an orthogonalization
routine based on the iterative NIPALS algorithm to extract components
that are orthogonal to the response set. Removing these components
from the predictor set then allows the application of standard PLS algo-
rithms [16,17]. To guarantee that the extracted orthogonal components
have a maximum variance, Fearn [18] introduced a slightly different
filtering algorithm.

Trygg and Wold [19] augmented the PLS algorithm to determine
score variables that are either correlated or orthogonal to the response
set. The advantages of this orthogonal PLS (O-PLS) algorithm lies in its
ability (i) to utilize cross-validation to prevent overfitting and (ii) to
exclude specific variation of the predictor variable set for predicting
the response set. Thus, the work in Refs. [15,18,19] can extract s2 up to
a similarity transformation if e = 0.

An alternative approach has been proposed in Zhao et al. [20]. This
approach relates to a post-processing of the PLS components to separate
those associated with the predictor set into components that are
correlated and orthogonal to the response variable set. A detailed anal-
ysis of this approach in this paper, however, shows that the separation is
not conducted in an optimal fashion.

Different to PCA and standard PLS, the techniques in Refs. [15,18–20]
can discriminate between s1 and s2 under the restriction that e = 0.
Hence, a modeling technique that can separately extract s1 and s2 for
e≠ 0 has not been introduced in the literature. For process monitoring,
however, such a technique is important, as it allows monitoring and
assessing whether (i) an abnormal event compromises product quality,
(ii) this event is safety critical, (iii) operator intervention is required or
(iv) the process can continue to operate at present.

Compared to the work in Refs. [15,18,19], this article proposes a
different way to addresses the second aim. Instead of extracting the or-
thogonal components s2 first, the paper introduces an augmented objec-
tive function for PLS to extract the correlated components s1 instead. The
deflated predictor sets then describes s2. In a similar fashion to the work
in Ref. [20], PCA can be applied to the deflated predictor set in case
some of the source signals in s2 have a small variance. The paper shows
that resultant algorithms for extracting s1 prior to s2 are computationally
more efficient than those extracting s2 first.

To address the first aim of this paper, this article develops a maxi-
mum likelihood (ML) formulation for PLS models that estimates the
error covariance matrices for e and f. This ML formulation is similar to
the ML extension for PCA models that has recently been discussed in
the literature [21,8]. For addressing the second aim, besides introducing
a number of algorithms for computing a solution to the augmented
PLS objective function, a further contribution of this article is the
development of computationally improved versions of the algorithms
in Refs. [19,20].

The paper is organized as follows. Section 2 analyzes the techniques
in Refs. [15,18–20] and motivates the rational for introducing the
proposed PLS framework. Assuming initially that e= 0, Sections 3–5 in-
troduce the augmented PLS objective function, shows that this objective
function is an iterative formulation of a maximum redundancy index,
describes the properties of the resulting algorithm and show that it
can determine each of the latent variable sets simultaneously.

For e ≠ 0, Section 6 proposes an ML estimation of the error covari-
ance matrices to consistently estimate the column space of A, B and
C. Section 7 discusses the implementation of the algorithms in
Refs. [19,20] and Sections 8 and 9 contrast the performance of the vari-
ous algorithms andfinally, Section 10presents a concluding summary of
this article.

2. Preliminaries

Following a brief analysis of the PLS technique, Sections 2.2 and 2.3
examine recently proposed techniques for extracting the s2 components
and for subsequently extract s1 and s2 from an existing PLS model, re-
spectively. Based on this analysis, Section 2.4 motivates the proposed
PLS framework.

2.1. Analysis of PLS modeling

The need for introducing orthogonal signal correction as a pre-
processing prior to the application of PLS [15,22,18] or to incorporate
an orthogonal projections into the PLS algorithm [19] results from the
PLS objective function for determining the weight vectors. Defining wi

and vi as the ith pair of weight vectors for x and y, respectively, this
objective function is as follows:

wi
vi

� �
¼ arg max

w;v
E wTxiy

Tv
n o

−1
2
λ wTw−1
� �

−1
2
λ vTv−1
� �

; ð3Þ

where xi is predictor set after applying the deflation procedure i − 1
times and λ is a Lagrangian multiplier. Applying the solution to Eq. (3)
for i = 1 determines linear combinations of x and y which represent
the score variables t1 and u1:

t1 ¼ wT
1As1 þwT

1Bs2 u1 ¼ vT1Cs1 þ vT1 f : ð4Þ

Substituting Eq. (4) into the PLS objective function gives rise to:

wi
vi

� �
¼ arg max

w;v
E t1u1f g−1

2
λ wTw−1
� �

−1
2
λ vTv−1
� �

: ð5Þ

A more detailed analysis of the expectation yields:

E t1u1f g ¼ rt1u1σ t1
σu1

¼ rt1u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wT

1As1
	 
2 þ wT

1Bs2
	 
2n or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E vT1Cs1
	 
2 þ vT1 f

	 
2n or ; ð6Þ

where rt1u1 is the correlation coefficient,σ 2
t1
andσ 2

u1
are the variances of

the score variables. Eq. (6) dictates a condition for discriminating be-
tween components that are correlated and orthogonal to y. If w1

TB =
0 and w1

TA = 0, t1 is correlated and orthogonal to y, respectively.
These conditions, however, are generally not be assumed. Moreover,
incorporating the deflation procedure for x allows demonstrating that
PLS is generally unable to extract t-score variables that discriminate
between s1 and s2.

2.2. Extracting components from x that are orthogonal to y

The approach by Wold et al. [15] is a modified NIPALS algorithm to
extract score vectors, ti ∈ ℝK, ti = Xiwi. The weight vector, wi∈ℝnx , is
determined such that ti is orthogonal to the column space of the
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