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The problem of model discrimination arises when several models are proposed to describe one and the same
process, a situation encountered in many research fields. To identify the best model from the set of rival
models, it may be necessary to collect new information about the process, and thus additional experiments
have to be performed. Several approaches have been described in literature to design optimal discriminatory
experiments. The anticipatory approach is one of them and is very appealing from a conceptual point of view
because the expected information content of the newly designed experiment is considered, even before the
experiment is performed (anticipatory design). In this paper, the performance of this approach is evaluated by
comparing it with the performance of other, established approaches to optimal experimental design formodel
discrimination. To conduct this comparison four performance measures were defined: (1) whether the most
appropriate model could be identified, (2) the number of additional experiments that have to be designed and
performed to achieve model discrimination, (3) the quality of the parameter estimates of the model that is
eventually identified as the most appropriate one, and (4) the rate at which the inadequate models are
identified. The results clearly indicate that the anticipatory approach has its benefits andmay be the preferred
approach in many applications in (bio)chemical engineering and in-silico biology.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical models are frequently used for the design, optimi-
zation and control of sometimes complex (bio)chemical processes.
They also have the potential to be(come) very valuable tools to
organize data and to consider interactions in complex systems in a
rational way. In fact, they are increasingly used for this purpose in
many research areas, especially in the emerging fields of systems
biology [3,13,19] and synthetic biology [1,21]. In his influential
overview paper [23], Kitano stresses that although the advances
made in molecular biology to accurately gather quantitative experi-
mental data have been enormous and will certainly continue, insights
into the functioning of biological systems will not result from
educated guesses alone, because of their intrinsic complexity. Instead,
a combination of experimental and computational approaches is
expected to resolve this challenging problem and, consequently,
experimental design techniques will become increasingly important,
as recognized by many researchers in the field [5,18,26,33,36,40].

The methods to design experiments that allow discriminating
among rival models in an effective and efficient way, often referred to

as optimal experimental design for model discrimination (OED/MD)
or optimal experimental design for (model)structure characterization
[41], will be the main focus of this paper. Indeed, when insight in a
process is insufficient, several hypotheses can be postulated on how
the process actually works. Each of these hypotheses can subsequent-
ly be translated into a unique model structure, and a set of rival
models for the process arises. Obviously, one is especially interested in
the model that describes the process under study in the most
appropriate way. To identify this model from the set of rival models, it
may be necessary to collect new information about the process, and
thus additional experiments have to be performed.

The problem of model discrimination has been addressed in a
number of ways (see [14] for a review), but common to all design
criteria is the fact that the problem is tackled as and translated into an
optimization problem. In the pioneering work of Hunter and Reiner
(1965) [22], the difference between the model predictions is simply
maximized (as explained in more detail further on). Although this
approach does not take into account the uncertainties inherently
involved in both the modelling phase and the experimentation phase,
the basic rationale is still present in (as good as) all design criteria for
OED/MD developed so far.

Buzzi-Ferraris and co-workers presented a design criterion that
takes into account both the uncertainty on the measurements and
the (resulting) uncertainty on the parameter estimates and model
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predictions [8]. The latter was further refined in [15] and [38], where
the so-called anticipatory approach to OED/MD was introduced. In
this approach, the expected information content of the newly
designed experiment is considered, even before the experiment is
performed (whence the term anticipatory design). In this way, a
better estimate of the uncertainties can be achieved and an
experiment with an increased discriminatory potential can be
obtained. Because of the similarity of this approach with the
conventional, state-of-the-art design criteria for optimal experimen-
tal design for parameter estimation (OED/PE), improved parameter
estimates can be obtained in addition tomodel discrimination [15,38].

The objective of this paper is to determine whether different
approaches to OED/MD differ in their ability to bring forth a series of
(informative) discriminatory experiments. In the evaluation of their
performance, four aspects are considered after applying them to a
case study with nine rival models that was used in previous work on
the subject [15–17]. The first aspect has to do with the outcome of the
model discrimination procedure, that is, how the procedure ends
(most appropriate model identified or all rival models rejected). The
second aspect is related to the number of additional experiments that
have to be (designed and) performed before the most appropriate
model can be identified. It is clear that this is very important, as one
obviously wants to minimize the number of additional experiments.
The third aspect is related to the quality of the parameter estimates of
the model that is eventually identified as the best one (if any). The
fourth and last aspect of the performance evaluation is related to the
rate at which the inadequate models are identified.

This paper is organised as follows. In Section 2, the basic rationale
of optimal experimental design for model discrimination is explained
and formalized in a mathematical manner. The section also presents
the approaches to design optimal discriminatory experiments that
were considered in this paper, as well as the four performance
measures that were used in their evaluation. To conclude, this section
explains how a case study was designed to investigate the
performance of the OED/MD methods. The results obtained after
applying these methods to the case study are presented and discussed
in Section 3 and the conclusions are presented in Section 4.

2. Methods

2.1. Mathematical model representation

In what follows, general deterministic models in the form of a set
of (possibly mixed) differential and algebraic equations are consid-
ered, using the following notations:

ẋ tð Þ = f x tð Þ;u tð Þ; θ; tð Þ; x t0ð Þ = x0 ð1Þ

ŷ tð Þ = g x tð Þð Þ ð2Þ

where x(t) is an ns-dimensional vector of time-dependent state
variables, u(t) is an nu-dimensional vector of time-varying inputs to
the process, θ is an np-dimensional vector of model parameters taken
from a continuous, realizable set Θ, and ŷ tð Þ is an nm-dimensional
vector of measured response variables that are function of the state
variables, x(t). An experiment will be denoted as ξ, and is determined
by the experimental degrees of freedom such as measurement times,
initial conditions and time-varying or constant process inputs.

2.2. Parameter estimation

The values of the model parameters, which by definition do not
change during the course of the simulation, have to be determined
from experimental data. This process is called parameter estimation,
and typically consists of minimizing the weighted sum of squared

errors (WSSE) functional through an optimal choice of the parameters
θ. The WSSE is calculated as follows

WSSE θ̂
� �

=∑
k=1

ne

∑
nspk

l=1
Δ ŷ ξk;θ̂; tl
� �

′⋅Q·Δ ŷ ξk; θ̂; tl
� �

; ð3Þ

where

Δ ŷ ξk; θ̂; tl
� �

=y ξk; tlð Þ− ŷ ξk; θ̂; tl
� �

ð4Þ

represents the difference between the vector of the nm measured
response variables and the model predictions at time tl (l=1,…, nspk

)
of experiment ξk (k=1, …, ne). Further, ne represents the number of
experiments from which data is used for estimating the parameters,
nspk

represents the number of sampling points in experiment ξk, and Q
is an nm-dimensional matrix of user-supplied weighing coefficients.
Typically,Q is chosenas the inverseof themeasurement error covariance
matrix ∑ [28,35,42]. In this way, the measurement uncertainty is
incorporated in the WSSE.

2.3. Model adequacy testing

To test amodel's adequacy, a lack-of-fit test, as outlined for instance
in [9–11], can be used. This test is based on the property of the WSSE-
functional being a sample from aχ2 distributionwith n−np degrees of
freedom. However, this property only holds under two assumptions
[11]: (i) the measurements are disturbed with random zero mean
normally distributed noise with known (or a priori estimated)
variance, and are not subject to systematic errors; and (ii) no model
errors are present.

In this work, the data to which the models are fitted (see below) is
generated by adding noise to the simulation results of which the
characteristics are known, so the first assumption is always valid.
Consequently, when the WSSE is significantly larger than the expected
value of the appropriate χn−np

2 distribution, one can conclude that the
model is not able to describe the experimental data in a reasonable
manner and the model can thus be rejected.

2.4. Optimal experimental design for model discrimination

In general, optimal experimental design is an optimization
problem, where the optimum of a well-defined objective function is
sought by varying the experimental degrees of freedom. This can be
formalized as follows

ξ⋆= argmax
ξ∈Ξ

T ξð Þ: ð5Þ

The experimental degrees of freedom, ξ, are restricted by a number
of constraints that define a set of possible experiments, denoted as Ξ.
These constraints are determined by the experimental setup and are
specified before the start of the experimental design exercise. Note
that in this context, the objective functions are also called design
criteria, and these terms will be used as synonyms in the following.

2.4.1. Design criterion of Hunter and Reiner (1965)
Suppose, for simplicity, that one has to design an experiment to

discriminate between two rival models (m=2). It is clear that the
data expected from the designed experiment should be predicted
differently by the two models to allow for model discrimination.
Hunter and Reiner translated this heuristic into an objective function
[22] given by

Tij ξð Þ=∑
nsp

l=1
Δ ŷij ξ;θ̂i;θ̂j; tl

� �
′·Δ ŷij ξ;θ̂i;θ̂j; tl

� �
; ð6Þ
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