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This paper presents a new strategy, target-oriented overall process optimization (TOPO), which can be used to
assure the consistent quality in herbal medicine products. The methodology of TOPO includes four parts, target
definition, data pretreatment, processmodeling and overall process optimization. The Bayesian approach is inte-
grated into the optimization step. The mechanism of TOPO involves optimizing multiple units of the production
system step by step, giving each unit optimal operating conditions consistent with the quality target. The effects
of TOPO were assessed using the descriptive statistics of the Bayesian posterior predictive distribution and the
final target achievement. The probability trajectory was adjusted to monitor and optimize the production pro-
cess. The proposed TOPO strategy was successfully applied to a seven-unit manufacturing process used to pro-
duce Lonicerae Japonicae extract. Results demonstrated that TOPO could keep the production process in line
with the predefined target and reduce the variability of the final products.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Herbal medicines and their derivatives have been used extensively
for thousands of years in many Asian countries, such as China, Japan
and Korea. For example, in China's National Essential Drug List (2012
Edition), 203 out of 520 total recommended drugs were herbal medi-
cine preparations. In Europe and North America, herbal medicines
have seen increasing use over the past few decades, largely in the
form of dietary supplements, functional foods or health products. It is
estimated that nearly 80% of the world's people still rely on herbal
medicines for health related benefits [1]. According to theWorld Health
Organization (WHO), the global market for herbal remedies and sup-
plements was about U.S. $83 billion in 2008, and it continues to grow
exponentially [2].

These trends lead to the imperative requirements of quality control
of herbal medicine products, because the quality of herbal products is
linked directly to their efficacy and safety [3]. Generally, quality control
of herbal products involves identification of the startingmaterial, details
of the manufacturing process, and standards for the finished product.
Currently, there are many technologies that can be used to control the
quality of these products, including chemical profilemethods, biological

methods, on-line analytical tools, integrated evaluation approaches, etc.
[4–7]. However, these methods mainly refer to the analytical aspects of
quality control, and very few studies have evaluated the engineering
aspects.

The major difficulties and challenges in the quality control of herbal
medicines lie in the variability of the herbal material, the degree of
which depends on factors such as the location of growing, the time of
harvest, preprocessing methods and storage conditions [8–10]. Natural
variability may be introduced into the manufacturing process, causing
fluctuations between different batches [11,12]. Under these circum-
stances, conventional analytical techniques can identify the variations,
but they cannot maintain quality consistence across herbal products.
For this reason, there is an urgent need to address the problem of vari-
ability from the production point of view, because the quality of herbal
products is affected by the manufacturing processes to a large extent
[13].

Nowadays, many technological systems have been adapted from the
chemical and pharmaceutical industries, and used to modernize the
ways in which herbal products are processed. These techniques include
solvent extraction, macroporous resin column chromatography, high-
speed counter-current chromatography and various dosage preparation
methods [14–18]. The overallmanufacturing process of herbalmedicine
often consists of multiple processing units, which could also be called
multistage batch process [19]. Through the serial processing stages,
the desired quality is transformed from the starting materials to the
final products step by step. Downstream units are influenced by up-
stream units. All parameters of the manufacturing process more or
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less affect the final product [20]. Although the manufacture of herbal
products is now subjected to the Good Manufacturing Practice (GMP)
standards, there is a lack of strategies to coordinate the relationships
between different production units and to optimize the process param-
eters, in order to assure consistent product quality. Nevertheless, devel-
oping such strategies is challenging, because of the complex kinetics
and thermodynamics of these processes, and of theunclearmechanisms
by which active ingredients are transferred.

In order to tackle the abovementioned difficulties, systematic meth-
odologies including multistage batch process modeling, monitoring, con-
trol and optimization, are needed to effectively control and improve the
product quality during the multistage manufacturing process [21–23].
And some new concepts, e.g. plant wide optimization (PWO), could also
be applied to facilitate optimal operation conditions consistent with the
quality objectives of the large scale production system [24–26]. Based
on these thoughts, a new strategy named target-oriented overall process
optimization (TOPO) is brought forward to address the problem of vari-
ability in the concentrations of active ingredients in herbal products.
The rest part of this article is organized as follows. First, a brief introduc-
tion is made about the mathematical foundations of TOPO. Then, techni-
cal details of the TOPO are illustrated. The method of expanding PLS
modeling proposed by A. Pomerantsev et al. [27] will be employed in
the TOPO strategy together with the Bayesian optimization technique.
After that, effects of the proposed TOPO strategy were tested in a seven-
unit manufacturing process used to produce the Lonicerae Japonicae
extract. Finally, a summary of this paper is provided.

2. Overview of TOPO

The target-oriented overall process optimization (TOPO) strategy
proposed in this study integrates the expanding PLS regression method
and the Bayesian approach together. Theword “expanding” heremeans
a series of PLSmodels are built at the end of each stage, where the qual-
ity variables can also be predicted [27,28]. For a multistagemanufactur-
ing system with many process variables, it is time consuming and even
impossible to optimize all combinations of variables. Therefore, with the
help of established series of PLS models, optimization operation is
designed to start from the second stage to the last stage. For a certain
stage to be optimized, all the historical data, as well as the measure-
ments from its previous stages are utilized. The goal of TOPO is to con-
sistently provide optimal assurance for the product quality meeting
defined specifications.

2.1. Mathematical fundamentals of TOPO

2.1.1. Partial least square regression
Partial least square (PLS) regression is a popular chemometric tool

and is widely applied in industrial research, development and produc-
tion. In the presence of historical production data which are often
none-designed and not orthogonal, or contain noisy and collinear pro-
cess variables, PLS method deserves the property to grasp hidden rela-
tionships between process variables and quality variables.

Themain purpose of PLS regression is to build a linearmodel relating
the independent data X (size m × n, m is the number of observations
and n is number of variables) with the response data Y (size m × q, q
is the number of responses):

Y ¼ XBþ E ð1Þ

where B (size n × q) is the matrix of regression coefficients; E is a noise
term and has the same dimension with Y. The basic assumption of PLS
method is that there is a small number of latent variables (LVs) [29],
which are linear combination of the original X variables, and can cap-
ture most of information in the calibration data for predicting the

responses. These latent variables are also known as X-scores, by which
the PLS model can be written as follows:

Y ¼ TV þ E ð2Þ

where T (size m × p, and p corresponds to the number of latent vari-
ables) is the matrix of X-scores; V (size p × q) is the matrix of inner
regression coefficients for T. PLS method produces the T through a
weighting matrix W and loading matrix P:

T ¼ XW PTW
� �−1 ð3Þ

whereW is a n × pmatrix and is computed tomaximize the covariance
between the scores and responses. P is a n × pmatrix. Two popular al-
gorithms can be employed to compute the scores matrix, i.e. the NIPALS
algorithm and SIMPLS algorithm [30,31]. Once T is obtained, the inner
regression coefficients V in Eq. (2) is estimated by regressing Y on T
via ordinary least square regression (OLS) procedures:

bV ¼ TTT
� �−1

TTY: ð4Þ

Given a new sample vector x (size n × 1), the x is firstly projected
onto the latent space, generating a score vector t (size p × 1):

t ¼ WTP
� �−1

WTx ð5Þ

Then, the corresponding response by could be predicted according to
Eq. (2):

by ¼ tTbV : ð6Þ

Prediction can also be made directly from original variables of the
sample x according to Eq. (1), where B is estimated as follows:

bB ¼ W PTW
� �−1

V: ð7Þ

The number of latent variables determines the complexity of the
model. Therefore, the test set validation method and cross validation
method (e.g. leave one out, LOO) are usually introduced to help select
the optimal number of LVs and to test the predictive ability during the
model construction [32]. Some chemometric indicators, such as root
mean square error of calibration (RMSEC), root mean square error of
cross validation (RMSECV), root mean square error of prediction
(RMSEP), ratio of performance to deviation (RPD), predicted residual
error sum square (PRESS) and bias, are often used to assess the perfor-
mance of the establishedmodel [33,34]. For example, the PRESS index is
calculated as:

PRESS ¼
Xm
i¼1

byi−yi
� �2

: ð8Þ

The PRESS value shows the sum of squares of deviation between the
predicted and the true property of the validation sample i during cross-
validation, and it decreases as the LVs increase. When the PRESS value
tends to be constant, the optimum number of LVs is obtained.

2.1.2. Bayesian approach
Under the framework of Bayes' theorem, the Bayesian inference

combines the prior knowledge about the model parameters with infor-
mation from measured data [35]. In process optimization, the Bayesian
approach provides a natural way of making inference on future re-
sponse ey from its posterior predictive distribution. Using the classical
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