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The problem of incomplete data – i.e., data with missing or unknown values – in multi-way arrays is
ubiquitous in biomedical signal processing, network traffic analysis, bibliometrics, social network analysis,
chemometrics, computer vision, communication networks, etc. We consider the problem of how to factorize
data sets with missing values with the goal of capturing the underlying latent structure of the data and
possibly reconstructing missing values (i.e., tensor completion). We focus on one of the most well-known
tensor factorizations that captures multi-linear structure, CANDECOMP/PARAFAC (CP). In the presence of
missing data, CP can be formulated as a weighted least squares problem that models only the known entries.
We develop an algorithm called CP-WOPT (CP Weighted OPTimization) that uses a first-order optimization
approach to solve the weighted least squares problem. Based on extensive numerical experiments, our
algorithm is shown to successfully factorize tensors with noise and up to 99% missing data. A unique aspect
of our approach is that it scales to sparse large-scale data, e.g., 1000×1000×1000 with five million known
entries (0.5% dense). We further demonstrate the usefulness of CP-WOPT on two real-world applications: a
novel EEG (electroencephalogram) application where missing data is frequently encountered due to
disconnections of electrodes and the problem of modeling computer network traffic where data may be
absent due to the expense of the data collection process.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Missing data can arise in a variety of settings due to loss of
information, errors in the data collection process, or costly experi-
ments. For instance, in biomedical signal processing, missing data can
be encountered during EEG analysis, where multiple electrodes are
used to collect the electrical activity along the scalp. If one of the
electrodes becomes loose or disconnected, the signal is either lost or
discarded due to contamination with high amounts of mechanical
noise. We also encounter the missing data problem in other areas of
data mining, such as packet losses in network traffic analysis [2] and
occlusions in images in computer vision [3]. Many real-world data
with missing entries are ignored because they are deemed unsuitable
for analysis, but this work contributes to the growing evidence that
such data can be analyzed.

Unlike most previous studies on missing data which have only
considered matrices, we focus here on the problem of missing data in
tensors because it has been shown increasingly that data often have

more than two modes of variation and are therefore best represented
as multi-way arrays (i.e., tensors) [4,5]. For instance, in EEG data each
signal from an electrode can be represented as a time-frequency
matrix; thus, data from multiple channels is three-dimensional
(temporal, spectral, and spatial) and forms a three-way array [6].
Social network data, network traffic data, and bibliometric data are of
interest to many applications such as community detection, link
mining, and more; these data can have multiple dimensions/
modalities, are often extremely large, and generally have at least
some missing data. These are just a few of the many data analysis
applications where one needs to deal with large multi-way arrays
with missing entries. Other examples of multi-way arrays with
missing entries from different disciplines have also been studied in
the literature [7–9]. For instance, [7] shows that, in spectroscopy,
intermittent machine failures or different sampling frequencies may
result in tensors with missing fibers (i.e., the higher-order analogues
of matrix rows or columns, see Fig. 1). Similarly, missing fibers are
encountered in multidimensional NMR (Nuclear Magnetic Reso-
nance) analysis, where sparse sampling is used in order to reduce
the experimental time [8].

Our goal is to capture the latent structure of the data via a higher-
order factorization, even in the presence of missing data. Handling
missing data in the context of matrix factorizations, e.g., the widely-
used principal component analysis, has long been studied [10,11] (see
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[3] for a review). It is also closely related to the matrix completion
problem, where the goal is to recover the missing entries [12,13] ( see
Section 3 for more discussion). Higher-order factorizations, i.e., tensor
factorizations, have emerged as an important method for information
analysis [4,5]. Instead of flattening (unfolding) multi-way arrays into
matrices and using matrix factorization techniques, tensor models
preserve the multi-way nature of the data and extract the underlying
factors in each mode (dimension) of a higher-order array.

We focus here on the CANDECOMP/PARAFAC (CP) tensor
decomposition [14,15], which is a tensor model commonly used in
various applications [6,16–19]. To illustrate differences between
matrix and tensor factorizations, we introduce the CP decomposition
for three-way tensors; discussion of the CP decomposition for general
N-way tensors can be found in Section 4. Let X be a three-way tensor
of size I× J×K, and assume its rank is R (see [5] for a detailed
discussion on tensor rank). With perfect data, the CP decomposition is
defined by factor matrices A, B, and C of sizes I×R, J×R, and K×R,
respectively, such that

xijk = ∑
R

r=1
airbjrckr; for all i = 1;…; I; j = 1;…; J; k = 1;…;K :

In the presence of noise, the true X is not observable and we
cannot expect equality. Instead, the CP decomposition should
minimize the error function

f A;B;Cð Þ = 1
2
∑
I

i=1
∑
J

j=1
∑
K

k=1
xijk− ∑

R

r=1
airbjrckr

 !2

: ð1Þ

An illustration of CP for third-order tensors is given in Fig. 2. The CP
decomposition is extensible to N-way tensors for N≥3, and there are
numerous methods for computing it [20].

In the case of incomplete data, a standard practice is to impute the
missing values in some fashion (e.g., replacing the missing entries
using average values along a particular mode). Imputation can be
useful as long as the amount of missing data is small; however,
performance degrades for large amounts of missing data [1,10]. As a
better alternative, factorizations of the data with imputed values for
missing entries can be used to re-impute the missing values and the
procedure can be repeated to iteratively determine suitable values for
themissing entries. Such a procedure is an example of the expectation
maximization (EM) algorithm [21]. Computing CP decompositions by
combining the alternating least squares method, which computes the
factor matrices one at a time, and iterative imputation (denoted EM-
ALS in this paper) has been shown to be quite effective and has the
advantage of often being simple and fast. Nevertheless, as the amount
ofmissing data increases, the performance of the algorithmmay suffer
since the initialization and the intermediate models used to impute
the missing values will increase the risk of converging to a less than
optimal factorization [7]. Also, the poor convergence of alternating

methods due to their vulnerability to flatlining, i.e., stagnation, is
noted in [3].

In this paper, though, we focus on using a weighted version of the
error function to ignore missing data and model only the known
entries. In that case, nonlinear optimization can be used to directly
solve the weighted least squares problem for the CP model. The
weighted version of Eq. (1) is

fW A;B;Cð Þ = 1
2
∑
I

i=1
∑
J

j=1
∑
K

k=1
wijk xijk− ∑

R

r=1
airbjrckr

 !( )2

; ð2Þ

where W, which is the same size as X, is a nonnegative weight tensor
defined as

wijk =

(
1 if xijk is known;
0 if xijk is missing; for all i = 1;…; I; j = 1;…; J; k = 1;…;K :

Our contributions in this paper are summarized as follows. (a) We
develop a scalable algorithm called CP-WOPT (CP Weighted OPTimi-
zation) for tensor factorizations in the presence of missing data. CP-
WOPT uses first-order optimization to solve the weighted least
squares objective function over all the factor matrices simultaneously.
(b) We show that CP-WOPT can scale to sparse, large-scale data using
specialized sparse data structures, significantly reducing the storage
and computation costs. (c) Using extensive numerical experiments on
simulated data sets, we show that CP-WOPT can successfully factor
tensors with noise and up to 99% missing data. In many cases, CP-
WOPT is significantly faster than the best published direct optimiza-
tionmethod in the literature [7]. (d)We demonstrate the applicability
of the proposed algorithm on a real data set in a novel EEG application
where data is incomplete due to failures of particular electrodes. This
is a common occurrence in practice, and our experiments show that
even if signals from almost half of the channels are missing,
underlying brain activities can still be captured using the CP-WOPT
algorithm, illustrating the usefulness of our proposed method. (e) In
addition to tensor factorizations, we also show that CP-WOPT can be
used to address the tensor completion problem in the context of
network traffic analysis. We use the factors captured by the CP-WOPT
algorithm to reconstruct the tensor and illustrate that even if there is a
large amount of missing data, the algorithm is able to keep the relative
error in the missing entries close to the modeling error.

The paper is organized as follows. We introduce the notation used
throughout the paper in Section 2. In Section 3, we discuss related
work in matrix and tensor factorizations. The computation of the
function and gradient values for the general N-way weighted version
of the error function and the presentation of the CP-WOPTmethod are
given in Section 4. Numerical results on both simulated and real data
are given in Section 5. Conclusions and future work are discussed in
Section 6.

2. Notation

Tensors of order N≥3 are denoted by Euler script letters (X;Y; Z),
matrices are denoted by boldface capital letters (A;B;C), vectors are

Fig. 1. A 3-way tensor with missing row fibers (in gray).

Fig. 2. Illustration of an R-component CP model for a third-order tensor X.

42 E. Acar et al. / Chemometrics and Intelligent Laboratory Systems 106 (2011) 41–56

image of Fig.�2


Download	English	Version:

https://daneshyari.com/en/article/1181040

Download	Persian	Version:

https://daneshyari.com/article/1181040

Daneshyari.com

https://daneshyari.com/en/article/1181040
https://daneshyari.com/article/1181040
https://daneshyari.com/

