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Current classification and regressionmethodologies are strongly focused onmaximizing prediction accuracy. Inter-
pretation is usually relegated to a second stage, aftermodel estimation, where its parameters and related quantities
are scrutinized for relevant information regarding the process and phenomena under analysis. Network-Induced
Supervised Learning (NI-SL) is a recently proposed framework that balances the goals of prediction accuracy and
interpretation [1], by adopting a modelling formalism that matches more closely the dependency structure of vari-
ables in current complex systems. This framework computes interpretable features that are incorporated in thefinal
model, which effectively constrain the predictive space to be used. However, this restriction does not compromise
prediction ability, which quite often is enhanced. Both classification and regression problems can be handled. Four
widely different real world datasets were used to illustrate the main features claimed for the NI-SL framework.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Quantitative models are pervasive in chemical and related sciences,
being required in a broad range of applications, either tacitly, as in clas-
sification, process monitoring or fault detection, where they are usually
encoded in the method's structure and parameters estimated from ref-
erence data, or in an explicit way, such as in process optimization, ad-
vanced control and product/process design, where a model must be
entirely specified before such tasks can be implemented. In this context,
a wide spectrumofmodelling approaches can be adopted, ranging from
those relying on a priori knowledge about the specific processes and
phenomena going on, where models are derived from the application
of the fundamental laws of nature (conservation of mass, energy and
momentum), to pure data-driven approaches able to “infer” or “induce”
process knowledge from data available in abundance, as happenswhen
the predictive space of the problemunder analysis is densely covered by
reliable observations.

However, in practice, the analyst is often confronted with situations
where the amount of a priori knowledge available is limited and, given
the number of variables involved, the predictive space is also not densely
populatedwith observations (a common consequence of thewell-known
“curse of dimensionality”). In these scenarios, empirical modelling ap-
proaches emerge as adequate solutions, by combining elements of the
two extreme paradigms: they use some data to develop models, but the

wide “gaps” in the multidimensional space are filled using the model
structure postulated, based on previous information about the process
and/or resulting fromsuccessivemodel refinements and accumulated ex-
perience. The way empirical modelling frameworks are currently devel-
oped and implemented falls into two possible categories. On one side,
one finds approaches that consider each variable one-at-a-time and the
model is built in a stagewise fashion. This process may be entirely se-
quential or involving iterations, but the distinguishing feature is the con-
sideration of a single variable in each step. Examples include the several
methodologies for constructing ordinary least squares (OLS) models
(forward addition, backward removal, forward/backward stepwise) [2],
classification and regression trees (CART) [3], k-nearest neighbour classi-
fication and regression methods (k-NN) [4]. On the other side, we find
multivariatemethods that consider simultaneously all variables involved.
Even though in the end theywillweight each variable differently, all vari-
ables are considered together in the analysis of the problem. Examples in-
clude partial least squares (PLS) [5–11], principal component regression
(PCR) [9,10], partial least squares for discriminant analysis (PLS-DA)
[12], soft independent modelling by class analogy (SIMCA) [13], linear
discriminant analysis classifiers (LDA) [14,15], etc. However, neither
of these two paradigms for the development of empirical models
match the underlying structure of variables found in complex systems,
irrespectively of their artificial (e.g., industrial facilities) or natural origin
(cells, tissues, cultures of microorganisms, etc.). It is well known today
that complex systems present high levels of modularity, hierarchy and
specialization [16–19]. Systems' input variables do not operate altogether
at the same time, nor do they act in an entirely isolated fashion. They are
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organized inmodules,with a certain degree of specialization, that operate
in the scope of one or several relevant functions in the system. The mod-
ules or cluster of variablesmay sometimeswork simultaneously, in a syn-
ergistic way, or some of themmay be silent under certain circumstances.
In this context, what the real nature of systems shows, is that the basic
modelling elements should be modules or clusters of variables, instead
of isolated variables or the whole set of them. Thus, empirical modelling
frameworks should adapt to this reality, in order to enable the develop-
ment of mathematical descriptions that are closer to the fundamental
nature of complex systems. Therefore, one of the features of themethod-
ology described in this article is to construct and handle clusters of
functionally related variables, instead of isolated variables or variates
containing all variables under analysis (a variate is a linear combination
of variables).

But developing an empirical modelling framework that better
matches the systems' inner mechanism is not the only issue to be im-
proved in current empirical methods. Another problem arises from
the full priority attributed by these methods, to the maximization of
prediction ability, leaving model interpretation concerns to a subse-
quent stage, after the model is established and validated. Examples
include OLS (maximization of quality of fit), PCA (maximization of
explained variation), PLS (maximization of prediction ability) and
LDA or LQA (maximization of true classification rate). The tacit pre-
mise is, apparently, “the best we can predict, the best we will be
able to explain”. However this is often not the case. Excessive focus on
prediction usually leads to situations where all degrees of freedom
available are used to maximize the amount of explained variability of
the response, resulting in complex and ambiguous combinations of var-
iables that raise many difficulties to interpretational queries. Of course,
the interpretation difficulties do not constitute a serious problemwhen
the goal of the analysis is strictly centred on the fitting or prediction
ability of the model, as happens for instance in calibration and
soft-sensor applications. However, the current challenges for analysts
and engineers involve, with an increasing frequency, the analysis and
operation of progressively more complex systems where the central
task ismore often focused in interpreting the nature of the relationships
between all the variables involved, their interaction and specific roles in
the process, than on producing accurate estimates for some system
properties or output variables. For instance, the goal can be to gain in-
sight in theway the systemswork for the purposes of process improve-
ment or development of new products, in which case the information
about the structure of relationships involved can be of great value for
defining the next sequence of experiments. Examples of applications
where this scenario can be found, include (but are not restricted to):
Quality by Design in the pharmaceutical sector (seeking a suitable
design space where more efforts can then be devoted in order to find
a proper formulation solution), cosmetic and food products, analysis
of biosystems (gene regulation, proteomics, metabolomics), analysis
of formulated products, or products with complex matrices (wine,
paints), and reduction of fluctuations in chemical processing industries.
This problem is also found in other scenarios involving the analysis of

complex systems, such as the discovery of mechanisms for complex
chemical reactions, inference of the molecular origin of a disease, max-
imization of the throughput from metabolic reactions, etc. In all these
cases, the focus in prediction ability is overtaken by the need to collect
information about the structure of the system and to knowwhichmod-
ules have an active role on the phenomena under study. In this context,
Network-Induced Supervised Learning (NI-SL) addresses from the very
onset of the analysis, the issue of improving the interpretational value of
the results [1]. This is done bybuilding, in thefirst stage,modules of var-
iables that potentially share the same function. These modules or clus-
ters are then used to construct the final model, whilst keeping their
integrity. Therefore, in the end, it is possible to analyse which modules
are playing an active role in driving the variability of the response. It is
also quite easy to extract the way variables interact in the scope of
each module that was found relevant, by analysing their associated
weights in the selected variates.

With these two goals inmind (matching complex systems underlying
mechanism and balancing interpretation and prediction accuracy), this
article presents the NI-SL approach, as follows. In the next section, we de-
scribe the basic stages of the framework, and refer how the method is
implemented in each one of its stages. Then, in the third section, the re-
sults achieved from the implementation of NI-SL in four real world case
studies from widely different scenarios, are presented. Two of them in-
volve classification problems (addressed with Network-Induced Classifi-
cation, NI-C) and the other two, regression problems (where we apply
Network-Induced Regression, NI-R). In the final section, we conclude by
summarizing themain contributions of this work, and point out some in-
teresting areas of future research in the continuation of the developments
reported here.

2. Methods

In this section, we introduce the empirical modelling framework
and describe its modules and methods employed. Being a supervised
learning framework, it addresses both classification and regression
problems. We assume that a suitable training set is available, [X,y],
where X represents the (n × m) matrix with m variables disposed in
columns, side-by-side, containing n observations, and y is the (n × 1)
vector of the response variable, which can be either quantitative or cat-
egorical depending on the type of problem addressed. The NI-SL frame-
work consists of two stages (Fig. 1). In the first stage, clusters of
variables potentially involved in the same function are formed, by
analysing the amount of unique information shared by pairs of variables
as a measure of their direct interaction. This will be evaluated through
the computation of partial correlations and the whole process is
robustified by a neighbourhood analysis of all pairs of variables in ques-
tion. The methodology followed is called Network-Induced Clustering.
In the second stage, the basic modelling elements formed in Stage I –
the clusters of functionally related variables – , are processed, selected
and combined, in order to derive the required classification or regres-
sion model, leading to Network-Induced Classification (NI-C) or
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Fig. 1. The modular and stagewise structure of the empirical modelling framework NI-SL.
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