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Kernel principal component analysis (KPCA) has beenwidely used in nonlinear processmonitoring; however, KPCA
does not always perform efficiently because useful informationmay be submerged under retained KPCs. To address
this shortcoming, probability density estimation- and moving weighted window-based KPCA (PM-WKPCA) is pro-
posed. PM-WKPCA is used mainly to estimate the probability and evaluate the importance of each KPC by kernel
density estimation and then set different weighting values on KPCs to highlight the useful information. The status
of the process is also evaluated comprehensively using weighted statistics within a moving window. The efficiency
of the proposed method is demonstrated by the following: case studies on a numerical nonlinear system, the sim-
ulated continuously stirred tank reactor process, and the Tennessee Eastman process. Monitoring results indicate
that the proposed method is superior to the conventional PCA, KPCA, and some typical extension methods.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Process monitoring has gained increasing interest because of the
rising demand in plant safety and product quality.With recent develop-
ments in data collection and computing technology, multivariate statis-
tical process monitoring (MSPM) methods [1–14] have progressed
quickly [15–17]. And among these MSPM methods, principal compo-
nent analysis (PCA) usually serves as the most fundamental one and
has been studied intensively and used extensively. PCA can be used
effectively with high-dimensional, highly correlated data by projecting
the data onto a lower dimensional subspace containing sufficient vari-
ance information of normal training data. However, PCA methods as-
sume that the relationship between process variables is linear, which
can easily change in practice [18–20].

With the nonlinear behavior of the chemical process considered,
numerous nonlinear PCA (NLPCA) approaches have been developed
[13,20,21], and the kernel PCA (KPCA) [22] method, which can effi-
ciently compute PCs in a high-dimensional feature space using the
kernel function, is the most widely used [22]. The key idea of KPCA
is to map the data initially into a feature space by nonlinear mapping
and then extract the PCs in the high-dimensional feature space. Amajor
advantage of KPCA is that it only requires solving an eigenvalue prob-
lem and requires no nonlinear optimization [18,19]. KPCA has gained
considerable attention because of its simplicity and efficiency, and it

has also been extended to dynamic KPCA [23] and multiscale KPCA
[24], among others, to solve various monitoring problems [10,25–27].

Despite sufficient research on KPCA and numerous successful
applications, the approach does not always perform efficiently. In
KPCA monitoring, the KPCA model is generated from the normal train-
ing data. The monitored variables are first nonlinearly mapped into a
high-dimensional space through the kernelmapping, and then the kernel
principal components (KPCs) are generated as linear combinations of the
variables in the high-dimensional feature space. Generally, the first sever-
al KPCs are employed to construct the dominant subspace [18,19,28], and
correspondingly, T2 statistic is used to monitor the variation in the domi-
nant subspace. In the T2 statistic, the employed KPCs are scaled with sim-
ilar importance degrees [15,28,29]. However, for a definite fault, the fault
usually causes one or several monitored variables' variation, and all the
employed KPCs are not guaranteed to have the same variation degree
[30]. Namely, there are some KPCs with larger variation, and others
with less or without variation. In all the employed KPCs, the KPCs with
larger variation contain more fault information and are beneficial to
find fault timely, and the KPCs with less variation or without variation
contain less or no fault information and aren't used to find fault.
Thus, for monitoring the definite fault, the importance degrees of all
the employed KPCs are usually not the same (as illustrated in the
Motivational example section below). Some KPCs would reflect more
information of the fault while others would reflect less. When all the
employed KPCs are used to monitor process with the same importance
by the T2 statistics, the useful information (contained in the KPCs with
larger variation) for detecting and diagnosing the fault may be sub-
merged by the KPCs with less variation and without variation, and
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poor monitoring performance happens. Therefore, the importance
degree of each employed KPC should be evaluated online and the
weighting strategy is needed to highlight the fault information.

Considering the issue of highlighting the useful variation in-
formation, several strategies used in MSPM from different aspects
have been reported. Wold [31] proposed a timely updated model
that weights recent observations more heavily than earlier ones.
He et al. [32] highlighted the fault information by weighting related
variables heavily in kernel Fisher discriminant analysis for fault diag-
nosis. Ferreira et al. [33] suggested a sample-wise weighted PCA for
multicampaign process monitoring. These methods mainly focused
on weighting raw measured variables without analyzing the impor-
tance of different latent variables. Rashid and Yu [10,27] used the
multidimensional mutual information to evaluate the statistical
dependency between the independent component subspaces of the
normal benchmark and monitored data sets, and constructed a
dissimilarity index which considered the online fault information.
This method highlighted the fault information in the ICA dominant
subspace, however, the behavior of each latent variable was not
analyzed. Jiang and Yan [30] proposed weighted principal compo-
nent analysis (WPCA) to highlight the useful information reflected
on the dominant subspace. Online WPCA evaluates the importance of
each PC by using the change rate of the T2 statistic along each PC and
setting different values on the PCs to highlight the useful information
for process monitoring. This method improved both fault detection
and identification performance; however, as iswell known, the nonlinear
relationships between variables can't be well extracted by linear PCA,
and therefore the WPCA is limited to linear processes.

In this article, probability density estimation- and moving weighted
window-based KPCA (PM-WKPCA) is proposed to solve the problem on
submerged useful information and improve performance in nonlinear
chemical process monitoring. To find and stress the informative KPCs
in time, the probability density estimation (PDE) method is employed.
First, the probability density function of each KPC in normal condition
is estimated through kernel density estimation (KDE)with large amount
of normal process data. Second, when online monitoring, the proba-
bility of each KPC score in the current sample is determined by the
previously obtained distribution, and the importance of the corre-
sponding KPC is evaluated. Then, different weighting values are
adaptively and objectively set on these KPCs according to impor-
tance (P-WKPCA). Moreover, with the relationship between the pre-
vious and the current status considered, the status of the process is
finally evaluated within a moving window to improve further the
monitoring performance.

The rest of this article is structured as follows. First, the KPCA
model used in process monitoring and KDE probability estima-
tion are briefly reviewed, followed by a motivational example that
illustrates the submerged useful information problem. Second, PM-
WKPCA monitoring is proposed and some details are presented.
In Section 4, the proposed monitoring method is tested in a numeri-
cal nonlinear process, the continuous stirred tank reactor (CSTR)
process, and the Tennessee Eastman (TE) process. The monitoring
results and several comparisons with conventional PCA, KPCA, and
WPCA are presented. Finally, the conclusions in this study are given
in Section 5.

2. Preliminaries

2.1. Kernel principal component analysis

In KPCA, observations are nonlinearly mapped into a high-
dimensional feature space F and then linear PCA is employed to
extract the nonlinear correlation between the variables [18,19,22].
Let the normalized training set be x1,…,xN ∈ Rm with N observations
consisting of m measured process variables. The feature space is
constructed by the nonlinear mapping: Rm →Φ •ð Þ C F , where Φ(•) is

the nonlinear mapping function [19,22]. The covariance matrix in
the feature space F is calculated as

C F ¼ 1
N

XN
j¼1

Φ x j

� �
Φ x j

� �T ð1Þ

where∑
N

j¼1
Φ x j

� �
¼ 0 is assumed. The kernel principal component can

be obtained by the eigenvalue problem [18,19,22]

λv ¼ C Fv ¼ 1
N

XN
j¼1

Φ x j

� �T
; v

D E
Φ x j

� �
λv ð2Þ

where λ and v denote the eigenvalue and the eigenvector of the co-
variance matrix CF, respectively, and 〈x,y〉 denotes the dot product
between x and y. This implies that all solutions v with λ ≠ 0 must
lie in the span of Φ(x1),…,Φ(xN). Then, λv = CFv is equivalent
to λ〈Φ(xk),v〉 = 〈Φ(xk),CFv〉(k = 1,…,N). There exist coefficients αi

(i = 1,…,N) such that v ¼ ∑
N

i¼1
αiΦ xið Þ . Rewriting Eq. (2), we obtain

the following:

λ
XN
i¼1

αi Φ xkð Þ;Φ xið Þh i ¼ 1
N

XN
i¼1

αi Φ xkð Þ;
XN
j¼1

x j

� �* +
Φ x j

� �
;Φ xið Þ

D E
k ¼ 1;…;Nð Þ: ð3Þ

Note that the eigenvalue problem in Eq. (3) only involves dot
products of mapped shape vectors in the feature space. We define
an N × N matrix K by [K]ij = Kij = 〈Φ(xi),Φ(xj)〉. The left-hand side
of Eq. (3) can then be expressed as [18,19,22]

λ
XN
i¼1

Φ xkð Þ;Φ xið Þh i ¼ λ
XN
i¼1

αiKki k ¼ 1;…;Nð Þ ð4Þ

and the right-hand side of Eq. (3) can be expressed as

1
N

XN
i¼1

αi Φ xkð Þ;
XN
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Φ x j
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Φ x j

� �
;Φ xið Þ

D E
¼ 1

N
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The principal component t of a test vector x is then extracted by
projecting Φ(x) onto the eigenvectors vk in F, as follows:

tk ¼ vk;Φ xð Þh i ¼
XN
i¼1

αk
i Φ xið Þ;Φ xð Þh i k ¼ 1;…;pð Þ ð6Þ

where p is the number of the kernel principal components retained,
which is empirically determined as the smallest number of the ordered
eigenvalues whose cumulative sum is above 85%.

In KPCA monitoring, the T2 and Q statistics are constructed and
monitored based on the assumption that the training data have a
multivariate normal distribution in the feature space [18]. The T2 sta-
tistic is the sum of normalized squared scores, expressed as [9,19]

T2 ¼ t1;…; tp
h i

Λ−1 t1;…; tp
h iT ð7Þ

where tk is obtained from Eq. (6), and Λ−1 is the diagonal matrix of
the inverse of the eigenvalues with the retained PCs.

The Q statistic is calculated by

Q ¼ Φ xð Þ−Φp xð Þ
��� ���2 ¼ Φ xð Þ−Φp xð Þ

��� ���2 ¼
Xn
j¼1

t2j−
Xp
j¼1

t2j ð8Þ

where n is the number of nonzero eigenvalues among the total N ei-
genvalues. More details on the two statistic parameters are presented
in the corresponding references [8,18,19].

122 Q. Jiang, X. Yan / Chemometrics and Intelligent Laboratory Systems 127 (2013) 121–131



Download English Version:

https://daneshyari.com/en/article/1181067

Download Persian Version:

https://daneshyari.com/article/1181067

Daneshyari.com

https://daneshyari.com/en/article/1181067
https://daneshyari.com/article/1181067
https://daneshyari.com

