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The purpose of this research was to develop new procedures with the aim of improving the usage of the
similarity factor f2 in dissolution data analysis, and to evaluate them jointly with preexisting ones. We
introduce bias-correction and standard error estimation procedures based on the delta, the jackknife and the
bootstrap methods. These methods, jointly with the rule of declaring similarity when f2 exceeds 50 and some
alternative testing procedures based on bootstrap confidence intervals, are evaluated on experimental data
and studied by simulation. The results indicate that no method is strictly the best, but the following
conclusions seem to appear: for estimation purposes the most reliable approach is to use the plain sample f2
instead of any bias-corrected alternative, any of the standard error estimates may be used in practice and,
most importantly, there are evidences against the validity of the procedure declaring similarity if the sample
f2 exceeds 50; a decision rule based on a confidence interval seems to be more adequate. In any case the
question should be further investigated.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A dissolution assay is a part of the demonstration of dosage form
ability to deliver in vivo thedrug substance, so is themost important test
to show the biopharmaceutical quality. Also dissolution assays can serve
other purposes: during the development of a medicinal product a
dissolution testmay be used as a tool to identify formulation factors that
are influencing the bioavailability of the drug; in the quality control
of scale-up and of production batches, a dissolution test may be used to
prove consistency in the manufacturing and to ensure that the
dissolution profiles remain similar to those of pivotal clinical trial
batches. Furthermore, in bioequivalence surrogate inference a dissolu-
tion test can be used to demonstrate similarity between different
formulations of an active substance and the reference medicinal
product. Consequently, interpretation and understanding of dissolution
results is an area of interest by the industry and the regulatory
authorities as well as by the pharmaceutical research.

According to Tsong et al. [1], dissolution data treatment may be
classified in model-dependent methods, model-independent meth-
ods and statistical procedures such as multivariate analysis approach,
method of repeated measures, time series approach and others. The
suitability of the mathematical model is determined by non-linear
regression analysis; once a suitable function has been selected, the

dissolution behavior is evaluated according to the physical meaning
of the fitted parameters. Model independent methods include the
difference factor f1 and the similarity factor f2, [2] that compare the
dissolution profiles of a pair of drug products using the dissolution
data in their native form.

It is evident from the pharmaceutical literature that no single
approach is widely accepted to determine if dissolution profiles are
similar [3]. Nevertheless, the similarity factor f2 (a descriptive index)
is gaining popularity due to its recommendation by various regulatory
committees as a criterion for the assessment of the similarity between
two dissolution profiles.

The U.S. Food and Drug Administration (FDA) has adopted the
similarity factor as a simplemethod to compare dissolution profiles, in
order to avoid subjective evaluation of dissolution profile comparison.
SUPAC-IR (1995) Guidance for Industry, [4], was the first regulatory
document from FDA to establish a clear policy for several scale-up and
post approval changes, applied to immediate release solid oral dosage
forms. According to this guidance, dissolution profiles may be
compared using the similarity factor f2 and all profiles should be
conducted on at least 12 individual dosage forms. Guidance [5] is an
extension of SUPAC-IR providing criteria for qualifying biowaivers for
drug products applied to active pharmaceutical ingredients exhibiting
high solubility and high permeability.

In the European Community, in addition to European Pharmaco-
poeia, there are several guidelines on dissolution assays. The European
Medicines Agency suggests using the similarity factor f2 to compare
dissolution profiles in Refs. [6] and [7].
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The above regulatory suggestions, possibly in addition to its
simplicity, explain why f2 is widely used in practice. In applications, f2
is mainly used as a:

a) Response or dependent variable [8–16] usually with optimization
purposes, e.g. to compare manufacturing processes for establishing
experimental conditionsmaximizing similarity between formulations.

b) Part of a decision criterion to establish similarity of two formula-
tions [17,18]. The regulatory suggestion “decide similarity if (the
sample) f2 exceeds 50” is applied in a literal sense.

Seldom is the sample f2 value complemented with an indication of
its precision, like a confidence interval, and sometimes its origin is
unclear [19] when it is included.

In the “a)” case, bias with different sign under two experimental
conditions would artificially enlarge or diminish the differences in the
observed response. The use of f2 as a response variable is critically con-
sidered in [20]. In the “b)” case, the type I and II error probabilities (that is,
the user and producer risks, respectively) may not be adequately under
control. If in fact the true f2 is less than 50, the probability of observing
fromexperimental data a sample f2 exceeding50 is not zero, and shouldbe
calculated. The need formore statistically sound approach seems evident.

The next section, “methods”, is divided in two subsections: the first
one summarizes themain concepts on statistical inference based on f2,
and introduces some additional methods; the second subsection
describes our simulation approach to study the properties of all these
statistical methods. The “results” section presents some computations
on real datasets and the simulation results. The “discussion” and
“conclusion” sections try to highlight the main consequences on the
similarity factor applicability in practice. In the supplementary
material web page http://www.ub.es/stat/angles/recerca/materials/
f2_supplementary.htm there are the complete datasets and the
mathematical details in the genesis of the new statistical indexes.

2. Methods

2.1. Statistical inference based on the similarity factor

Typically, dissolution data are repeated measures where drug
percent dissolved is the dependent variable and time is the repeated
factor. More formally, the response variable in dissolutions assays, xijk,
is the cumulative percentage dissolved from tablet or unit k (k=1,…,
n), at sampling time tj ( j=1,…,P) of the test or reference batch, (i=T,
R). These observations may be collected in a three-way array, x=
(xijk)i=T,R; j=1,…,P; k=1,…,n.

The (sample) similarity factor is defined as:

f̂ 2 = 50 log 1 +
1
P
∑
P

j=1
ðRj−TjÞ2
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where Rj=(Σk=1
n xRjk/n) and Tj=(Σk=1

n xTjk/n) correspond to the
sample means for all tablets at time point j, for the reference and
test batches, respectively. Here “log” stands for the base 10 logarithm.

The sample f2 and all indexes considered here are functions of the
average differences δ̂=(δ 1̂,…,δ p̂)′ with δ ̂j=Rj−Tj. For brevity, we
will express all these indexes in terms of δ̂ and of

dð δ̂Þ = 1 +
1
P
∑
P

j=1
δ̂
2
j : ð2Þ

For example, the sample f2 becomes f̂ 2 = 50 log ½dð δ̂Þ�−1=2⋅100
n o

=
100−25 logfdðδ̂Þg: Table 1 summarizes all the f2 indexes considered in
this paper.

Note that the variance of the δĵ differences can be estimated by:

v̂arð δ̂jÞ = ðs2Rj + s2TjÞ= n ð3Þ

where sRj2 and sTj
2 are the unbiased estimates of the variance for all data

at the j-th time point, for the reference and test batches, respectively.
To what extent conclusions based on the f̂ 2, are reliable? Its direct

use normally ignores that it is just an estimate, subject to statistical
error, of the true f2 parameter:

f2 = 50 log 1 +
1
P
∑
P

j=1
ðμTj−μRjÞ2
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where μTj and μRj correspond to the true “population” means.
Liu et al. [21] discuss the methodological problems associated to

the use of the sample f2 statistic, f̂ 2. Provided that the only
experimentally observable quantity is f̂ 2, both to state the alternative
hypothesis of similarity as H1: “ f̂ 2 N50” or to use the decision rule
“reject the null hypothesis of no similarity if f̂ 2 N50” are ill-defined.
These authors establish that f̂ 2 is a biased but asymptotically unbiased
and consistent estimator of f2. They suggest the index f̂

�
2 (see also

Table 1) as a bias-corrected version of f̂ 2.
Provided that it is very difficult to obtain the sampling distribution of

f̂ 2, or even some of its characteristics like its standard error, to test for
dissolution profile similarity using f2, Shah et al. [22] use nonparametric
“bootstrap bias corrected and accelerated”, BCa, confidence intervals.

Ma et al. [23] state in a precise way the problem of testing for
similarity of dissolution profiles using the similarity factor. These
authors distinguish between the “population” or “theoretical” f2 value,
specifying hypotheses about similarity, and the sample f2, f̂ 2,(or
related statistics) to be used in estimating the true f2 or in testing
hypotheses about it. Under this view, deciding about similarity
between dissolution profiles may be interpreted in terms of a null
hypothesis of dissimilarity vs. an alternative hypothesis of similarity:

H0 : f2≤θ0 vs: H1 : f2 N θ0 ð5Þ

where θ0 is a similarity limit, typically θ0=50. This is also the point of
view taken in our paper.

Ma et al. use the simpler “bootstrap percentile” confidence intervals.
The associated decision rule is “decide similarity if LPαNθ0(=50)”where
LP
α stands for the lower confidence limit of the one-sided percentile
interval with nominal confidence(1−α)100%, [LPα, 100]. Their simula-
tion results indicate that f̂ 2 is not very biased and in general better than
f̂
�
2, which overcorrects for bias. The test based on percentile bootstrap

intervals seems to perform adequately in terms of type I error
probability and acceptably in terms of type II error probability. The
simulated dissolution profiles are generated according to a normal
distribution with independent observations inside each simulated
dosage unit. One of the objectives of our paper is to elucidate if these
results are still valid when some dependence structure between the
observations inside each dosage unit is introduced, in agreement with
what seems to happen in real dissolution experiments. The other
objective is to introduce some additional indexes related to f2 and to
determine if these additional indexes representa possible improvement.

A possible drawback of the bias-corrected estimator f̂
�
2 is that it is

undefined when ∑
P

j=1
ðRj−TjÞ2b∑

P

j=1
ðs2Rj + s2TjÞ= n. This is overcome by

the alternative bias-corrected estimator f̂ 2;bc introduced in Table 1.
This bias-corrected estimator tries to take into account the within-
units correlation. Under complete profile equality, δ ̂=0 the last term
of f̂ 2;bc vanishes and it is always less than 100. This counterintuitive
trend is palliated by growing values of n and/or P.

An alternative approach for bias correction, slightly more compu-
ter intensive than the preceding one, may be based on the jackknife
method. The resulting estimator f̂ 2;Jbc is also shown in Table 1.
According to the usual jackknife procedure and notation, what is
designated f̂ 2;ðR−jÞ in Table 1 corresponds to the standard estimate
Eq. (1) but computed deleting the j-th unit or tablet profile in the R
data, and similarly for f̂ 2;ðT−jÞ. A counterintuitive aspect of f̂ 2;Jbc is that
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