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The paper presents flexible component analysis-based blind decomposition of the mixtures of Fourier
transform of infrared spectral (FT-IR) data into pure components, wherein the number of mixtures is less
than number of pure components. The novelty of the proposed approach to blind FT-IR spectra
decomposition is in use of hierarchical or local alternating least square nonnegative matrix factorization
(HALS NMF) method with smoothness and sparseness constraints simultaneously imposed on the pure
components. In contrast to many existing blind decomposition methods no a priori information about the
number of pure components is required. It is estimated from the mixtures using robust data clustering
algorithm in the wavelet domain. The HALS NMF method is compared favorably against three sparse
component analysis algorithms on experimental data with the known pure component spectra. Proposed
methodology can be implemented as a part of software packages used for the analysis of FT-IR spectra and
identification of chemical compounds.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Extraction of the pure component spectra from the mixtures of
their linear combinations is of great interest in many applications.
Classical approach to extraction of the spectra of pure components is
to match the mixture's spectra with a library of reference compounds.
This approach is ineffective with the accuracy strongly dependent on
the library's content of the pure component spectra and cannot reflect
the variation of the spectral profile due to environmental changes.
Alternatives to library matching approach are blind decomposition
methods, wherein pure components' spectra are extracted using
mixtures spectra only. Blind approaches to pure components spectra
extraction have been reported in NMR spectroscopy [1], infrared (IR)
[2–4] and near infrared (NIR) spectroscopy [4–6], EPR spectroscopy
[7,8], mass spectrometry [1,4,9,10] Raman spectroscopy [11,12] etc. In a
majority of blind decomposition schemes independent component
analysis (ICA) [13–15] is employed to solve related blind source
separation (BSS) problem. ICA assumes that: (i) pure components are
statistically independent, (ii) at most one is normally distributed and
(iii) number of mixtures is greater than or equal to the unknown
number of pure components. The two requirements: to have more
linearly independent mixtures than pure components and to have
statistically independent pure components seem to bemost critical for
the success of the BSS approach to blind decomposition of the
mixtures spectra into pure components spectra [4,5,8,10]. Statistical

independence assumption is certainly not fulfilled in the case of IR
spectra [2–6] because they are highly correlated i.e. overlapped. Raw
data preprocessing technique by first or second order derivative has
been used in FT-IR spectra analysis to reduce level of statistical
dependence among pure components, [2–6]. This technique actually
belongs to the generalization of the ICA known as dependent
component analysis (DCA), [14,16–18]. An algorithm for blind
decomposition of EPR spectra has been derived in [8] minimizing
contrast function that exploits sparseness rather than statistical
independence among the pure components. Unfortunately, sparseness
criterion cannot be used in the case of FT-IR spectra due to high degree
of overlap between them, especially in wavelength or wavenumber
domain. All discussed blind spectra decomposition methods require
the number of mixtures spectra to be equal to or greater than the
unknown number of pure components spectra. In a number of real
world situations it is however not easy to acquire mixtures spectra
with different concentrations of the pure components spectra. In this
regard it is desirable property of blind decompositionmethods to solve
related BSS problem with as few mixtures as possible. Here, we
demonstrate flexible component analysis (FCA) approach to blind
decomposition of more than two pure components FT-IR spectra from
two mixtures only. To solve related underdetermined BSS (uBSS)
problem we use recently developed nonnegative matrix factorization
(NMF) algorithm that is known as local or hierarchical alternating least
squares (HALS) NMF algorithm [19,20,40]. Its unique property is to
estimate concentration or mixing matrix globally and pure compo-
nents spectra locally, wherein smoothness and sparseness constraints
are simultaneously imposed on the pure components spectra. Unlike
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majority of the BSS algorithms that assume the number of pure
components to be known, proposed approach estimates it from the
mixtures spectra in the wavelet domain by means of data clustering
algorithm, [21]. Transformation of the mixtures spectra in wavelet
domainyields representation that is significantly sparser than inoriginal
wavenumber domain. This enables more accurate estimation of the
number of pure components spectra, especially due to the fact that used
data clustering algorithm requires that pure components spectra are in
average sparse in the chosen basis. Comparison of the HALS NMF
approach against sparse component analysis (SCA)based approach [22–
25] on experimental uBSS problem, which is presented in Section 3,
yields favorable results. Therefore, it is believed that proposed FCA-
basedapproach to blindextractionof theFT-IRpure components spectra
is practically important. The rest of the paper is organized as follows.We
introduce data clustering algorithm, SCA and FCA concepts in Section 2.
Results and discussion of the experimental comparative performance
analysis of the FCA and SCA approaches on two mixtures of IR spectra
containing three pure components are given in Section 3. Conclusions
are presented in Section 4.

2. Computational methods

Like many decomposition methods proposed approach is based on
static linear mixture model

X = AS ð1Þ

where X ∈ R0+
N×T represents matrix of N measured mixtures spectra

acrossTwavenumbers,A∈R0+
N×M represents thematrixof concentration

profiles also called the mixing matrix and matrix S ∈ R0+
M×T contains M

pure components spectra across T wavenumbers. Due to the nature of
the problem all quantities in Eq. (1) are nonnegative. As already pointed
out, the number of pure components M is in principle unknown
although many BSS/ICA algorithms assume that it is either known in
advance or can be easily estimated. This does not seem to be true in
practice, especiallywhen the BSSproblem is underdetermined.Here,we
shall treat M as unknown parameter that will be estimated by the
clustering algorithm to be described in Section 2.1. In addition to
estimate the number of pure components used data clustering
algorithm also estimates the concentration matrix. This is necessary
for the SCA approach described in Section 2.2, but is not necessary for
HALSNMFapproach described in Section 2.3. In overall, the BSS problem
related to blind FT-IR spectra decomposition consists of: (i) estimating
the number of pure components spectra; (ii) estimating the matrix of
the pure components spectra S; (iii) estimating the concentration
matrix A. All three tasks are executed usingmatrixofmixtures spectra X
only. In addition to that, we allow the number of pure components
spectra M to be greater than the number of mixtures spectra N. Hence,
blind FT-IR spectra decomposition problem becomes uBSS problem.

2.1. Data clustering

In FT-IR spectra decomposition problem considered in this paper
we shall assume that pure components spectra are in average k=M-1
sparse in wavelet domain. This implies that at each coordinate in
wavelet domain in average only one pure component is active i.e.
nonzero. This assumption allows to reduce number of mixtures to
N=2, hence reducing the computational complexity of to be used
data clustering algorithm [21] by reducing dimension of the
concentration subspaces, that equals average number of active
components, to 1. However, we are aware that it is not realistic to
demand that pure components FT-IR spectra do not overlap in any
representation domain including wavelet domain used here. That is
why we expect that pure components spectra are only in average
k=M−1 sparse in wavelet domain. Under such assumption the
appropriately chosen function, see Eq. (3), will effectively cluster data,

wherein the number of clusters corresponds with the estimate of the
number of pure components M. If the number of coordinates that
violates k=M−1 sparseness assumption in wavelet domain is
relatively large this will influence accuracy of the estimation of the
concentration matrix due to the repositioning of the cluster centers. It
will not however influence in the same amount the accuracy of the
estimation of the number of clusters. Thus, performance of the SCA
algorithms that require the estimate of the concentration matrix in
order to proceed to the next phase and solve underdetermined system
of linear equations will be affected significantly if FT-IR spectra are not
sparse enough in the chosen basis. On the other hand proposed FCA
approach will be significantly less sensitive to the level of sparseness
of the FT-IR spectra because it only requires from the clustering
algorithm the estimate of the number of pure components spectra.

Because solution of the BSS problem is generally characterized by
scale indeterminacy we shall assume the unit norm constraint (in the
sense of ℓ2 norm) on the columns of the concentration matrix A, i.e.,
{||am||2=1}m=1

M . As already pointed out, in this paper we do assume
the number of mixtures to be N=2. Thus, the normalized mixing
vectors {am}m=1

M lie in the first quadrant on the unit circle, i.e., they are
parameterized as:

am = cos umð Þ sin umð Þ½ �T m = 1; :::;M ð2Þ
whereφm representsmixing angle that is confined in the interval [0,π/2].
We do assume that mixtures are transformed into wavelet domain
through wavelet transform

Xn a; bð Þ = 1ffiffiffi
a

p

Z∞
−∞

xn tð Þψ t − b
a

� �
dt n = 1; :::;N

where thea andb represent respectively scale (resolution level) and time
shift and Ψ(t) represents wavelet function. After extensive experiments
we have found out that symmlets with two to eight vanishing moments
yield best results in terms of sparseness of X(a,b). Thus, the results
reported in Section 3 were obtained with the symmlets with the four
vanishing moments. The fact that symmlets performed best is just
experimentalfinding.Wehave also triedDaubechie'swavelet of different
order, Haar wavelet, Morlet wavelet, Mexican hat wavelet, Coiflets and
some biorthogonal wavelets. From the sparse representation point of
view thekeypropertyof thewavelet is tomatchwell thewaveformof the
particular signal of interest (in this case the FT-IR spectra). It is however
very hard to find such a wavelet in case of FT-IR signals. Perhaps, the
optimal solutionwould be to design new wavelet that will reflect better
morphological properties of FT-IR data than standard wavelets do.
Wavelet transform above can be used either as continuous or as discrete.
In the results presented in Section 3we have used discrete shift invariant
wavelet transform with the resolution levels corresponding to a=21 or
a=22. By assuming 1-dimensional concentration subspaces the cluster-
ing algorithm [21] is outlined by the following steps:

1) We remove all data points close to the origin for which applies: {||x(a,
bt)||2≤ε}t=1

T , where ε represents some predefined threshold. This
correspondswith the casewhenpure components spectra are close to
zero.

2) Normalize to unitℓ2 norm remaining data points x(a,bt), i.e., {x,(a,
bt)←x(a,bt)/||x (a,bt)||2}t=1

T ̅
, where T ̅≤T denotes number of data

points that remained after the elimination process in step 1.
3) Calculate function f(a), where a is defined with Eq. (2):

f að Þ =
XT
t=1

exp − d2 x a; btð Þ; að Þ
2σ2

 !
ð3Þ

where d x a; btð Þ; að Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x a; btð Þ � að Þ2

q
and (x(a,bt)∙a) denotes

inner product. Parameter σ in Eq. (3) is called dispersion. If set to
sufficiently small value, in our experiments this turned out to be

171I. Kopriva et al. / Chemometrics and Intelligent Laboratory Systems 97 (2009) 170–178



Download	English	Version:

https://daneshyari.com/en/article/1181144

Download	Persian	Version:

https://daneshyari.com/article/1181144

Daneshyari.com

https://daneshyari.com/en/article/1181144
https://daneshyari.com/article/1181144
https://daneshyari.com/

