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This paper discusses the monitoring of complex nonlinear and time-varying processes. Kernel principal
component analysis (KPCA) has gained significant attention as a monitoring tool for nonlinear systems in
recent years but relies on a fixed model that cannot be employed for time-varying systems. The contribution
of this article is the development of a numerically efficient and memory saving moving window KPCA
(MWKPCA) monitoring approach. The proposed technique incorporates an up- and downdating procedure to
adapt (i) the data mean and covariance matrix in the feature space and (ii) approximates the eigenvalues and
eigenvectors of the Grammatrix. The article shows that the proposed MWKPCA algorithm has a computation
complexity of O(N2), whilst batch techniques, e.g. the Lanczos method, are of O(N3). Including the adaptation
of the number of retained components and an l-step ahead application of the MWKPCA monitoring model,
the paper finally demonstrates the utility of the proposed technique using a simulated nonlinear time-
varying system and recorded data from an industrial distillation column.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The demand for effective quality monitoring and safe operation in
the petrochemical industry has propelled research into statistical-
based fault detection and diagnosis methods over the past few
decades. Multivariate statistical methods such as principal component
analysis (PCA) [1,42,47], partial least squares [24,32,46] and more
recently independent component analysis [10,27,30] have been
developed and applied for this purpose. Among them, PCA is the
most popular one, which relates to its conceptual simplicity. However,
such methods collectively assume linear variable interrelationships,
which hamper their application if these relationships are nonlinear.

Kramer [22] developed one of the first nonlinear extensions of PCA,
which rely on auto-associative neural networks (ANNs). Reference [9]
proposed a simplification that incorporated principal curves into this
neural network structure. However, the nonlinear function is ap-
proximated by a linear combination of several univariate nonlinear
functions, which represents a restriction of generality [19]. This was
addressed by introducing input-training neural networks [19,38]. A
detailed review in Reference [25] suggested that neural network
based techniques may not represent a generic nonlinear extension of
PCA.

The analysis in Reference [25] also yielded that KPCA [37] is a
generic nonlinear PCA extension, which can efficiently compute PCs in
a high-dimensional feature space using integral operators and
nonlinear kernel functions. The core idea of KPCA is to first map the
data space into a feature space using a nonlinear mapping and then
compute the PCs in the feature space. It should also be noted that
KPCA only requires the solution of an eigenvalue problem, and, since it
can incorporate different kernel functions, KPCA can handle a wide
range of nonlinearities. In addition, KPCA does not require a pre-
estimate of the number of retained PCs.

Despite recently reported KPCA-based monitoring applications
[8,16,26,45], the following problems arise: (i) the identification of a
KPCA monitoring model requires the storage of the symmetric kernel
matrix, whose dimension is given by the number of reference samples
and (ii) themonitoringmodel isfixedwhichmay produce false alarms if
the process is naturally time-varying. The latter problem has been
addressed bya recursiveKPCA formulation [5,21,44], similar in approach
to thework on linear recursive PCA [29,43]. However, the kernel matrix
grows in size each time a new data point becomes available which is
practically problematic (memory and computational requirements).

Implementing a moving window approach, as proposed by
Hoegaerts et al. [17], overcomes this problem and produces a constant
size of the kernel matrix and a constant speed of adaptation [42]. The
adaptation of the kernel matrix relies on a simultaneous up- and
downdating, which is memory efficient compared to a recalculation of
the kernel matrix. It is important to note, however, that alterations in
the samplemean of the original as well as the transformed variable set
in the feature space were not considered in [17]. This, however, can
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reduce the sensitivity for detecting fault conditions as discussed in
Reference [44]. An adaptive monitoring scheme is therefore required
for the mean of the transformed variable set in the feature space and
for incorporating this change into the kernel matrix prior to the
adaptation of the KPCA model.

This article proposes the adaptation of the mean and covariance
matrix in the feature space and addresses the following issues, which
the literature has not considered yet: (i) how to adapt the eigen-
decomposition of the Gram matrix numerically efficient, (ii) how to
determine changes in the number of retained PCs, (iii) how to adapt the
statistical confidence limits based on the adapted KPCA model and
(iv) how to prevent the KPCA model from adapting incipiently
developing faults. Compared to conventional methods, such as Rank-1
modification [3,11], inverse iteration [12] or the Lanzcos method [34,35]
which this article shows to be ofO(N3), the proposedmethod is ofO(N2).

The paper is organized as follows. Preliminaries of KPCA-based
monitoring are presented prior to the adaptation of the mean and
covariance matrix in the feature space. Section 4 then presents the
adaptation of theMWKPCAmodel. This is followed by summarizing the
adaptation of the number of retained PCs and the univariatemonitoring
statistics. Next, a simulation example (Section 6) and the analysis of
recorded data froman industrial distillation unit (Section 7) are given to
demonstrate the effectiveness of the MWKPCA technique. Finally,
Section 8 provides a concluding summary of this article.

2. Preliminaries

KPCAmaps a set ofM observations xaRn, n andMaN,MNn, into a
high-dimensional feature spaceΦ(x)a F and subsequently performs a
PCAonΦ(x). Let xi be the ith sample, the covariancematrix forΦ(x) is:

CΦ =
1

M − 1

XM
i=1

Φ xið Þ− mΦð Þ Φ xið Þ−mΦð ÞT =
1

M − 1
Φ Xð ÞΦT Xð Þ; ð1Þ

wheremΦ = 1
M
Φ Xð Þ1M is the sample mean in the feature space, 1M is an

M-dimensional vector of ones,Φ(X)=[Φ(x1),Φ(x2),…,Φ(xM)],Φ Xð Þ =
Φ Xð Þ− 1

M
Φ Xð ÞEM , EM=1M×1MT , is themean centered featurematrix and

X=[x1 x2 ··· xM]. Next, an eigendecomposition of CΦ is computed:

CΦuk =
1

M − 1
Φ Xð ÞΦT Xð Þuk = λkuk k = 1;2; N ;M; ð2Þ

where λk and uk represent the kth eigenvalue-eigenvector pair of CΦ.
Given that the explicit mapping function Φ(x) is unknown, KPCA
circumvents the use of Φ(x) by utilizing the eigendecomposition of the
centered Grammatrix G = ΦT Xð ÞΦ Xð ÞaR

M×M:

ΦT Xð ÞΦ Xð Þvk = fkvk; ð3Þ

where fkaR and vkaR
M represent the kth eigenvalue-eigenvector pair of

G. Introducing the kernel definition K(xi, xj)=ΦT (xi)Φ(xj), G can be
computed from the kernel matrix K = ΦT Xð ÞΦ Xð ÞaR

M×M

G = K − 1
M

KEM − 1
M

EMK +
1
M2 EMKEM: ð4Þ

After constructing the PCA model in the feature space, the KPCA
score vector, taRr , for a new sample x ∉ X is given by:

t = UTΦ xð Þ = ATΦT Xð Þ Φ xð Þ− 1
M

Φ Xð Þ1M

� �
= AT k X;xð Þ− 1

M
K1M

� �
: ð5Þ

Here, Φ
P
(x)=Φ(x)–mΦ, r is the number of retained PCs, U =

u1 u2 :::ur½ �a F; A = I − 1
M EM

� �
Va RM× r ; V = v1ffiffiffiffiffi

f1
p v2ffiffiffiffiffi

f2
p : : : vrffiffiffiffi

fr
p

h i
a RM× r

and k X; xð ÞaRM represents the kernel vector constructed fromX and x:

k X; xð Þ = K x1;xð Þ K x2;xð Þ : : : K xM ; xð Þð ÞT : ð6Þ

For processmonitoring, KPCA relies onHotelling's T2 andQ statistics:

T2 = tTΛ−1t Q = Φ
P

xð ÞT I − UUT
h i

Φ
P

xð Þ; ð7Þ

where Λ is a diagonal matrix storing the variances of the score
variables and Q = K x;xð Þ− 2

M
1T
Mk X;xð Þ + 1

M21
T
MK1M − tT t:

3. Adaptation of mean and covariance matrix

This section describes the first contribution of this article and
relates to the adaptation of the mean and covariance matrix in the
feature space. Conventional movingwindow PCA (MWPCA)work [42]
utilizes a two-step procedure that involves removing the oldest
sample, further referred to as downdating, and then adding the newly
available sample, defined as updating. This is followed by recomput-
ing the PCA decomposition including the adapted variable mean and
covariance matrix in a numerically efficient way, e.g. by applying
inverse iteration or Lanczos method [29,42].

For the transformed data in the feature matrix,Φ(X), applying the
same two-step procedure involves the utilization of an intermediate
window, which discards the effect of the oldest sample, and the “new”

window that includes the impact of the newly available sample.
Setting the window length to NaN and defining the feature matrices
that stores the transformed data of the intermediate window and the
new window by Φ(Xe) and Φ(X̂), respectively, the adaptation of the
mean and covariance matrix of the transform variable set conceptually
relies on the following procedure:Φ(X)⇒Φ(Xe)⇒Φ(X̂), whereΦ(Xe)=
[Φ(x2), ⋯, Φ(xN)], Φ(X̂)=[Φ(x2), ⋯, Φ(xN), Φ(xN+1)]. Here, Xe=[x2 x3 ⋯
xN], X̂=[x2 ⋯ xN xN+1], and Φ(xN+1) is the newly recorded sample
transformed into the feature space.

As shown in Eq. (1), a KPCA model is constructed from the co-
variancematrix of the process data transformed into the feature space.
Its adaptation requires the adaptation of the mean vector,mΦ, and the
covariance matrix, CΦ, by the following two-step procedure [42]. It
should be noted that the development of the adaptation algorithms
for the mean, covariance matrix and the subsequent KPCA model
relies on the first shift of the moving window, that is when the first
“new” sample, xN+1, becomes available. This is for convenience only
and does not represent a restriction of generality.

Step 1. Downdating (Φ(X)→Φ(Xe)):Themeanvector in the feature space
of the intermediate window, me Φ, can be expressed by that of the “old”
window,mΦ, and the removal of the impact of the oldest sample,Φ(x1):

emΦ =
N

N − 1mΦ − 1
N − 1Φ x1ð Þ ð8Þ

Incorporating Eq. (8) into the definition of the covariance matrix
gives rise to:

eCΦ =
N − 1
N − 2

CΦ − N
N−1ð Þ2 Φ x1ð Þ− mΦð Þ Φ x1ð Þ−mΦð ÞT

� �
: ð9Þ

Step 2. Updating Φ(Xe)→Φ(X̂): The mean vector in the feature space
of the new window, m̂Φ, can be computed from the intermediate
window matrix, me Φ, and the new observations, Φ(xN+1):

m̂Φ =
N − 1

N
emΦ +

1
N
Φ xN + 1
	 
 ð10Þ

Using the above equation, the covariance matrix of the trans-
formed data in the new window becomes:

ĈΦ =
1

N − 1
Φ X̂
� �

Φ X̂
� �T

=
N − 2
N − 1

eCΦ +
1
N

Φ xN + 1
	 


− emΦ
	 


Φ xN + 1
	 


− emΦ
	 
T

;
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