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Chemical process installations are exposed to aggressive chemicals and conditions leading to corrosion. The
damage from corrosion can lead to an unexpected plant shutdown and to the exposure of people and the
environment to chemicals. Due to changes within and on the surface of materials subjected to corrosion,
energy is released in the form of acoustic waves. This acoustic activity can be captured and used for corrosion
monitoring in chemical process installations. Wavelet packet coefficients extracted from the acoustic activity
have been considered to determine whether corrosion occurs, and to identify the type of corrosion process, at
least for the most important corrosion processes in the chemical process industry. Feature subset selection is
then applied to these wavelet coefficients to achieve a much higher accuracy in the identification of different
corrosion processes than when no feature subset selection is applied to the acoustic waves. However, due to
the statistical dependencies that potentially exist between the wavelet coefficients, the latter should not be
selected independently from each other. Local discriminant basis selection algorithms do not take the
statistical dependencies betweenwavelet coefficients into account. In this paper, we have used several mutual
information-based approaches that take these dependencies into account and compared them to the wavelet-
specific local discriminant basis selection algorithm. Furthermore, a hybrid filter–wrapper genetic algorithm,
which uses a relevance–redundancy approach as a local search procedure, was designed. The highest
classification accuracies are obtained with the hybrid filter–wrapper genetic algorithm, for all classifiers used
in this paper. Furthermore, the proposed algorithm easily outperformed one of the most commonly used
classifiers in chemometrics: partial least squares discriminant analysis (PLS-DA). A naïve Bayes classifier that
uses the features selected by the hybrid filter–wrapper genetic algorithm was able to identify the absence of
corrosion, uniform corrosion, pitting and stress corrosion cracking, with an accuracy of up to 87.20%.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The continued need for corrosion monitoring

Corrosion destroys each year a large part of the world's economy.
The global cost of corrosion, consisting of direct and indirect costs, is
estimated at 3.8% of the GWP (gross world product) [1]. This global
cost equals $1930 billion in US dollars for the year 2004. For the
United States, the total cost of corrosion is estimated at $504 billion
($304 billion direct costs+$200 billion indirect costs) per year in
2004 [1,2], which represents about 4.7% of its GDP (gross domestic
product). The direct costs are the costs incurred by the owners or
operators. These costs consist of the following [1,2]: the use of more
expensive or additional materials to prevent corrosion, the labor and
equipment for corrosion management, the loss of revenue due to

disruption of the supply of the product, the loss of reliability, and the
loss of capital due to corrosive deterioration. The indirect costs are
incurred by the user of the products or the society. In the chemical,
petrochemical and pharmaceutical sectors [2], which are the targeted
sectors here, the direct costs are extrapolated to $1.9 billion for 2004
[1,2]. About 60% of the mechanical failures in the chemical process
industry are due to corrosion [3]. A large part, 25 to 40%, of the direct
and indirect costs can be saved by the use of corrosionmonitoring and
control systems [4]. Corrosion detection provides feedback to
operators about the state of the plant so that they can participate in
managing the high corrosion costs [4]. Direct costs that can be avoided
by the use of monitoring systems are due to the increased reliability of
the plant, avoidance of the disruption of the supply of products,
decreased loss of capital and avoidance of lawsuits against companies
(e.g., due to pollution caused by leaks of the installations), among
other factors. Indirect costs can be equally important as these costs
have an impact on the society and environment. In some sectors,
damage due to corrosion can be tolerable, but in the chemical,
petrochemical and nuclear sectors, corrosion damage can be cata-
strophic, even resulting in the loss of lives and environmental damage.
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Regular practice in the chemical process industry consists of
periodic inspections of the plant, e.g., every 3 months, every 6 months
or every year [5]. A recurring problem with such periodic inspections
is that one can overlook the active damage that occurs in the plant;
furthermore, immediately after inspection, the damage can continue
to grow until the next periodic inspection is scheduled. Clearly, such
situations should be avoided. A solution is offered by continuous
monitoring using corrosion monitoring systems. Different techniques
are available for corrosion detection and monitoring in the chemical
process industry [5,6]. In this research, we identify themost important
types of corrosion in the chemical process industry using the acoustic
emission signals that are emitted during the corrosion process.
Chemical reactions, as occurring during corrosion, emit acoustic
activity [7,8] as well as themicroscopic damage and fracture processes
that occur during corrosion [9]. The acoustic emission technique has
the advantage that it is low cost and allows for a continuous, on-line
monitoring so that the damage can be detected as soon as it occurs [6].

1.2. Wavelet packet feature extraction and selection from acoustic
emission

Although future successes in corrosion prevention still depend on
selecting and developing more corrosion resistant materials, it is
expected that the main progress in corrosion prevention will be
achieved with better information-processing strategies and the
development of more efficient monitoring tools that support
corrosion control programs [10]. Feature extraction, feature subset
selection, and classifier choice and design are all information-
processing strategies that should be explored in the design of better
corrosion monitoring systems.

Features to characterize the acoustic emission activity have often
been obtained in the time-amplitude domain [5,8,11], the frequency
domain [5,8,12], or the time–frequency domain using the Continuous
Wavelet Transform (CWT) [13,14], the Discrete Wavelet Transform
(DWT) [14] or the Wavelet Packet Transform (WPT) [15]. The process
of constructing informative features that discern between different
classes is often not trivial, but some generic approaches are available
[16]. One generic approach is to consider basis functions that can be
used to extract features. A library of basis functions can be obtained
from the Wavelet Packet Transform [17–19]. Moreover, Wavelet

Packet Decompositions are more flexible than the Discrete Wavelet
Transform (DWT) and the Fourier Transform (FT) [19].

One of the challenges that arises after the use of theWavelet Packet
Transform is the selection of a basis that is optimal in some sense, or
the selection of a few coefficients for signal compression or pattern
recognition purposes [18,20–25]. The current paper contributes to the
selection of the most informative basis functions, from a library of
wavelet packets, to distinguish between different classes of corrosion,
using information theory.We usemutual information [26] to guide the
search for informative basis functions by taking into account the
statistical dependencies between the wavelet coefficients. Mutual
information is intensively used in chemometrics as a feature selection
criterion [27–31]. It is a filter-based variable selection technique,
meaning that it does not take the interaction with the final machine
learning algorithm used for pattern prediction into account [16,32].
This may lead to an inferior performance compared to wrapper [32]
approaches. However, the latter often come with an increased
computational cost. A wrapper-based feature subset selection ap-
proach will become computationally expensive when thousands of
features are obtained, which is typically the case after wavelet packet
coefficients have been extracted from acoustic emission signals. A
solution exists in combining the mutual information-based approach
with a wrapper search, leading to a so-called hybrid filter–wrapper
approach [33,34]. In this article, we will follow this hybrid filter–
wrapper strategy by performing the expensive local search in a genetic
algorithm [35] with a simple, mutual information-based filter. Our
approach is generically applicable to classification problems only
requiring a set of training signals with corresponding class labels. The
approach proposed here is called GIBFS (Genetic Informative Basis
Function Selection). It is a genetic algorithm driven approach using
mutual information as a local search procedure applied to a dictionary
of basis functions for feature extraction.

2. Materials and methods

2.1. Experimental set-up

This section briefly sketches the experimental set-up for recording
the acoustic emission signals. The experimental set-up is shown on
the left side of Fig. 1.
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Fig. 1. Experimental set-up of the probe in a by-pass of the installation on the left and the signal processing and machine learning part on the right.
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