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A B S T R A C T

This work considers the so called controlled calibration model in which the independent variable is a
controlled variable (Berkson type) and assumes that the measurement errors follow a scale mixtures of
normal (SMN) distribution. The SMN family of distributions is an attractive class of symmetric distributions
including the normal, Student-t, slash and contaminated normal distributions as special cases, providing a
robust alternative to estimation in controlled calibration models in the absence of normality. An EM-type
algorithm is developed, which is used to develop the local influence approach to assess the robustness
aspects of the parameter estimates under four perturbation schemes. Results obtained from a real dataset
in the area of chemistry are reported.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In chemical analysis, a chemist wants to establish a calibration
line in order to measure the amount of some chemical element
in samples. Calibration models are intended to link a quantity of
interest X (e.g. the concentration of a chemical compound) to a value
Y obtained from a measurement device. In this context, a major
concern is to build calibration models that are able to provide precise
predictions for X from measured responses Y. There are two stages
related to this calibration process: in the first stage, a calibration
curve is established for the relation between the dependent variable
Y and the independent variable X. In this stage, for each pre-fixed
amount X, the measurement Y is made with a quick and inexpen-
sive method. The pre-fixed amount X has been determined by an
extremely accurate standard method that is slow and expensive.
Afterwards, at the second stage, the measurement Y0 corresponding
to an unobserved value X0 of X is observed.

When the concentration of the standard solution is pre-fixed
by the chemist and a process is carried out attempting to attain it,
errors are generated even though the standard method is extremely
accurate. Hence, in this case the so-called controlled variable X
arises (also known as Berkson-type variable, [1]), which is defined
by the pre-fixed concentration value of the standard solution.
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Assuming additive error, it can be expressed by the equation
x = X + d, where x is the unobserved variable, which represents
the unknown real concentration, and d is the related measurement
error variable.

Motivated by chemical applications with replicated measurement
of the variable Y, and as a generalization of the controlled calibra-
tion model proposed in [2], one can write the controlled calibration
model with replicated measurement on the response variable (CCM)
as follows:

Yij = a + bxi + 4ij, j = 1, · · · , mi and i = 1, · · · , n, (1)

xi = Xi + di, i = 1, · · · , n, (2)

Y0i = a + bX0 + 40i, i = n + 1, · · · , n + r, (3)

where the variables X1, X2, · · · , Xn are taken as pre-fixed values by
the analyst. Typically, one assumes that the error variables are inde-
pendent and normally distributed (iid), i.e., 4ij, 40l

iid∼ N
(
0,s2

4

)
and

di
iid∼ N

(
0,s2

d

)
. If Nk(l,

∑
) denotes the k-variate normal distribution

with mean l and covariate matrix
∑

, then the first stage error model
is given by:

0i =
(
4i

di

)
iid∼ Nmi+1(0,Xi), (4)
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where 4i =
(
4i1, . . . , 4imi

)� and mi + 1 is the number of components
of 0i, which can vary from unit to unit in some applications, and the

covariance matrix Xi =
(
s2
4 Imi 0
0 s2

d

)
is an (mi +1)× (mi +1) matrix

of known form indexed by a set of unknown parameters s2
4 and s2

d .
The second stage error model is given by:

40 ∼ Nr

(
0,s2

4 Ir

)
, (5)

where 40 = (40n+1, . . . , 40n+r )� and Ir represents the r × r identity
matrix.

In this case, the model parameters are a,b, X0,s2
4 and s2

d and the
main interest is to estimate the quantity X0. Moreover, the Berkson-
type variable Xi is a fixed and known value, and 4i and xi are unknown
random quantities, i = 1, . . . , n.

Despite its interesting usability the distribution of the measure-
ment errors as well as the unobserved covariates are assumed to be
Gaussian, but unfortunately, this normal assumption is too restric-
tive and suffers from lack of robustness, which may have important
effects on inferences. Hence, a study of the properties of the con-
trolled calibration model under nonstandard assumptions, such as
normality, is very pertinent. Our approach is to replace the nor-
mal distribution by the scale mixtures of normal distributions [3],
which is the most important subclass of the elliptically symmetric
distributions. In this work we consider a classical approach for CCM
assuming scale mixtures of normal (SMN) distributions. This exten-
sion results in a flexible class of models for robust estimation in
CCM that contains as proper elements, the normal (N), Student-t (T),
slash (SL) and the contaminated normal (CN) distributions. All these
distributions present heavier tails than the normal one, and thus can
be used for robust inference in many types of models.

The assessment of robustness aspects of the parameter esti-
mates in statistical models has been an important concern of various
researchers in recent decades. The deletion method, which consists
in studying the impact on the parameter estimates after dropping
individual observations, is probably the most employed technique
to detect influential observations (see [4]). Nevertheless, research on
the influence of small perturbations in the model/data on the param-
eter estimates has received increasing attention in recent years. This
can be achieved by performing local influence analysis, a general
statistical technique used to assess the stability of the estimation
outputs with respect to the model inputs. Following the pioneer-
ing work of Cook [5], this area of research has received considerable
attention in the recent statistical literature. However, as the observed
log-likelihood function of the CCM with SMN distributions (here-
after, SMN-CCM) involves some integrals, direct application of Cook’s
approach [5] for SMN-CCM is very difficult, because these mea-
sures involve the first and second partial derivatives of this function.
Zhu and Lee [6] developed an approach to perform local influence
analysis for general statistical models with missing data by work-
ing with a Q-displacement function closely related to the conditional
expectation of the complete-data log-likelihood at the E-step of
the EM algorithm. Zhu et al. [7] developed a rigorous differential-
geometrical framework for a perturbation model, named the per-
turbation manifold. This approach shows that the metric tensor of
the perturbation manifold provides important information about
selecting an appropriate perturbation for a specific model and, it also
defines new influence measures for smooth objective functions. The
theory of Zhu et al. [7] was developed on the basis of the observed
data likelihood, therefore it is not suitable for application to com-
plex latent variable models that involve observed-data likelihood
with intractable integrals. An application of this approach can be
found in [8], where this method is applied in functional comparative
models with replicated data.

The paper is organized as follows. Section 2 presents the robust
SMN-CCM and discusses the maximum likelihood (ML) estimation
via the EM-algorithm. Additionally, the expected information matrix
is derived analytically. In Section 3, we give a brief introduction to
the local influence approach for models with incomplete-data and
develop the method required for the SMN-CCM. The advantage of
the proposed method is illustrated using a real chemical dataset
in Section 4. Section 5 presents our concluding remarks and some
mathematical expressions and figures are given in the Appendix.

2. Model formulation and estimation

2.1. The SMN class of distributions

In this section we define the SMN-CCM. Before this, let us
recall that a SMN distribution is defined as the distribution of the
p-dimensional random vector

Y = l + j1/2(U)Z, (6)

where l is a location vector, Z is a normal random vector with mean
vector 0, variance–covariance matrix S, j(.) is a weight function and
U is a mixing positive random variable with cumulative distribution
function (cdf) H(u; m) and probability density function (pdf) h(u; m),
independent of Z, where m is a scalar or parameter vector indexing
the distribution of U. Given U, Y follows a multivariate normal dis-
tribution with mean vector l and variance–covariance matrix j(u)S,
i.e., Y|U = u ∼ Np(l, j(u)S). Hence, the pdf of Y is given by:

f (y) =
∫ ∞

0
0p(y|l, j(u)S)dH(u), (7)

where 0p(.|l,S) stands for the pdf of the p-variate normal distri-
bution with mean vector l and covariate matrix S. A particular
case of this distribution is the normal distribution, for which H
is degenerate, with j(u) = 1, u > 0. From here on, we denote
SMNp(l,S; H) as the SMN distribution with the pdf Eq. (7). We notice
that when k(u) = u−1 in Eq. (6), the distribution of Y reduces to
the normal/independent (NI) family discussed, for instance, in [9].
The multivariate T distribution with m degrees of freedom, can be
derived from the mixture model (7), by taking j(u) = 1/u, where U
is distributed as Gamma(m/2,m/2), with u > 0,m> 0. The SL distribu-
tion arises when j(u) = 1/u and the distribution of U is Beta(m, 1),
0 < u < 1 and m> 0. The CN distribution is given when j(u) = 1/u
and U is a discrete random variable taking one of two states.

2.2. The proposed model

Eqs. (1)–(2) from the CCM can be represented as:

Yij = a + bXi + nij, (8)

where nij = 4ij + bdi.
The SMN-CCM can be formulated as a generalization of the model

defined in Eqs. (1)–(3), which can be obtained by considering Eq. (8)
along with Eq. (3) , and the following assumptions:

nij ∼ SMN1

(
0,b2s2

d + s2
4 ; H

)
, j = 1, . . . , mi, i = 1, . . . , n,

40i ∼ SMN1

(
0,s2

4 ; H
)

, i = n + 1, · · · , n + r,

cov
(
di, 4ij

)
= 0 for all i, j, cov

(
di, 40j

)
= 0 for all i, j,

cov (4ik, 4il) = 0, k �= l and cov (40k, 40l) = 0, k �= l.



Download	English	Version:

https://daneshyari.com/en/article/1181235

Download	Persian	Version:

https://daneshyari.com/article/1181235

Daneshyari.com

https://daneshyari.com/en/article/1181235
https://daneshyari.com/article/1181235
https://daneshyari.com/

