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A B S T R A C T

Calibration model transfer is an important issue in infrared spectra analysis. For identical sample, spectra
collected with master and slave spectrometers share same components. In the sense of mathematics, they
share same basis. If the basis and corresponding coefficient matrices can be obtained, the model transfer
can be efficiently realized. On the other hand, the performance of calibration model transfer method will
degrade if there are outliers and noise in samples. In this paper, a robust calibration transfer model is pro-
posed. Cauchy estimator are employed to learn same basis shared by master and slave spectra robustly.
Transformation matrix can be calculated with the two corresponding coefficient matrices. Slave testing
spectra are represented with the common basis and corresponding coefficients are then transferred using
the transformation matrix. The slave testing spectra can be transferred using common basis and the cor-
rected coefficients. The convergence property and bound of proposed model are also discussed. Extensive
experiments are conducted, experimental results demonstrate that our robust calibration transfer model
can generally outperform the existing methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate calibration model transfer is the key problem in
infrared spectral quantitative analysis [1–3]. Multivariate calibration
techniques are commonly employed but in practice the model is
invalid if an existing model is applied to spectra measured under dif-
ferent circumstances (temperature and humidity) or on a separate
instrument [4]. Recalibration can be utilized to break the limitation,
but it is expensive and time consuming. This motivates calibration
transfer method which refers to the transfer of quantitative analysis
model between different instruments or conditions [5, 6]. Calibration
transfer plays an important role, because of the possibility of using an
existing model to analyze new samples obtained in new conditions
or with an new instrument without the need to build the calibration
model again [7–10].

Various calibration model transfer methods have been proposed,
which have been comprehensively discussed [11, 12]. These meth-
ods fall into three categories. The first category is the pre-processing
methods which eliminate or decrease the differences between mas-
ter and slave spectra, including baseline elimination, derivative
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techniques, multiplicative scatter correction (MSC) [8], FIR filter-
ing [9], orthogonal signal correction (OSC) [10], and generalized least
squares (GLS). The second is to find a transformation matrix that
maps the response of the slave instrument onto the master instru-
ment, including direct standardization (DS) and piecewise direct
standardization (PDS). The third is based on subspace learning. The
transforation matrix is built in subspace.

Direct standardization (DS) and piecewise direct standardization
(PDS) methods are the representative approaches of second category
[13, 14]. DS uses the whole spectrum on the slave instrument to fit
each spectral point on the master instrument. While in PDS, a small
window from the slave spectrum is used instead of the entire spectral
range.

CCA is a widely employed subspace learning tool in machine
learning and pattern recognition, which is successfully applied
to correct the differences between spectra measured on different
instruments because of its ability to reveal the correlations between
them [15]. CCA is first employed to reduce the dimensionality of
master and slave spectra. The transformation matrix is calculated in
lower subspace. Peng pointed out that the CCA is a linear subspace
learning method. There are many subspace learning techniques, such
as PCA, locality preserving projections (LPP) [16, 17], and neighbor-
hood preserving embedding (NPE) [18]. However, the dense matrices
eigenvalue decomposition in these algorithms is expensive in both
time and memory, and the solution of the optimization problem
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is usually unstable when the number of features is larger than the
number of samples. Thus spectral regression based model transfer
method is proposed by Peng [19] to cast the problem of learning
an embedding function into a regression framework, which avoids
eigenvalue decomposition. The difference between the CCA based
model transfer and Peng’s method is that the direction vectors for
master and slave spectra are calculated with spectral regression.

Calibration model transfer is to find the relationship between
master and slave spectra. For simplicity, master and slave spectra
are obtained using same sample. According to Lambert–Beer’s Law,
mixture spectrum is weighted sum of pure substance spectra. Thus,
if the pure substance spectra are obtained, calibration model trans-
fer can be implemented efficiently. Unfortunately, to obtain pure
substance spectra of complex mixture is impossible. In the sense of
mathematics, master and slave spectra share same basis. If the basis
and corresponding coefficient matrices can be obtained, the model
transfer can be efficiently realized.

To obtain high accuracy, spectra acquisition is one of the most
important stage in quantitative analysis. It would be desirable to
eliminate or minimize the sources of data variability that are not
related to the analytical property of interest. In fact, the spectra col-
lected with infrared spectrometer are often affected by noise and
outliers. Thus, the proposed methods should be robust against the
noise and outliers to obtain higher accuracy.

In machine learning and pattern recognition, Cauchy estimator is
more robust than least square estimator and �1 estimator [20, 21].
Compared with least square estimator and �1 estimator, Cauchy esti-
mator can heavily reduce the influence of large errors. Meanwhile,
when an estimator is robust, it is inferred that the influence of any
single observation is insufficient to yield a significant offset. Cauchy
estimator has been shown to own this property. At this point, we
proposed a new robust method based on Cauchy estimator to correct
the spectral data.

The rest of the paper is organized as follows. We review gen-
eral principles of calibration model transfer methods in Section 2.
We formulate robust calibration model transfer and provide an effi-
cient algorithm for solving the proposed model in Section 3, where
analysis to convergence analysis and bound discussion are also con-
ducted. Experiments and result analysis are provided in Section 4 and
conclusions are drawn in Section 5.

2. Related work

Infrared spectroscopy is an extensively employed analytical tech-
nique in many industrial applications because of its rapidness and
the fact that it is non-destructive to the samples. Multivariate cali-
bration techniques are commonly used method to build quantitative
analysis model, such as partial least squares (PLS) regression [1]
and principal component regression (PCR) [2]. However, a problem
occurs when an existing model is applied to spectra that were
measured under new environmental conditions or on another instru-
ment. New spectra contain variation which can lead to erroneous
predictions. A possible solution to this calibration transfer problem
is to measure every sample in the new instrument and construct a
new model for it. However, this process would be both costly and
time consuming. A more acceptable way is to apply chemometrics
techniques to correct the difference of spectra measured on two
instruments.

2.1. Classical calibration model

Let Xs and Xm be the spectral matrices obtained from master and
slave instruments respectively. X̄s and X̄m are subsets of Xs and Xm

respectively, C and C̄ are corresponding concentration matrices. Ks

and Km are the matrices of sensitivities on both instruments, each

row is the pure components spectra. The relationships between the
concentration matrices and observed matrices Xs and Xm are:

Xm = CKm (1)

Xs = CKs = C(Km + DK) (2)

where DK is the difference matrix between Ks and Km. The same
relationship is hold for the subsets.

X̄m = C̄Km (3)

X̄s = C̄Ks = C̄(Km + DK) (4)

The difference matrix DK can be calculated by:

DK = C̄+(X̄s − X̄m) (5)

Then Xs is estimated as

X̂s = Xm + CC̄+(X̄s − X̄m) (6)

with X̂s and C, a new calibration model can be built for prediction on
the slave instrument. Two assumptions are implied in this method:
the linear relationship should hold on both instruments and the con-
centrations for all analytes contributing to the response must be
known. For complex compound, where the concentrations are not
known, this method is invalid.

2.2. Direct and piecewise direct standardization

In direct standardization, response matrices on both instruments
are related to each other by a transformation matrix F:

X̄m = X̄sF (7)

where F is calculated as:

F = X̄+
s X̄m (8)

Lin [22] studied calibration model transfer between different tem-
peratures. The method is based on direction standardization.

Piecewise direct standardization builds several local regression
models to fit the every wavelength of the master spectra using a
range of wavelengths of the slave spectra. The ith wavelength of mas-
ter spectra Xm(:, i) is regressed on the slave piece [Xs(:, i − j), . . . ,
Xs(:, j + k)]. According to the PLS or PCR regression model,
Xm(:, i) = [Xs(:, i − j), . . . , Xs(:, j + k)]bi. We obtain the matrix
F = diag(bT

1, . . . , bT
p). The linear relation between master and slave

instruments is Xm = XsF.

2.3. CCA based calibration model transfer

CCA based model transfer is proposed by W. Fan [15]. Canoni-
cal correlation analysis is employed to analyzed the mean centered
standardization sets Tm and Ts. Direction matrices Wm and Ws are
obtained and the canonical variables Lm and Ls are obtained by pro-
jecting the standardization sets on to the direction matrices. The
transform matrix F1 and F2 are determined by F1 = L+

s Lm and
F2 = L+

m Tm. The transferred prediction set Zs is Zs = KsF1F2 where
Ks = PsWs.
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