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When confronted with multivariate multiblock data (i.e., data in which the observations are nested within
different data blocks that have the variables in common), it can be useful to synthesize the available information
in terms of components and to inspect between-block similarities and differences in component structure. To this
end, the clusterwise simultaneous component analysis (C-SCA) framework was developed across a series of pa-
pers: C-SCA partitions the data blocks into a limited number of mutually exclusive groups and performs separate
SCA's per cluster. In this paper, we present a more general version of C-SCA. The key difference with the existing
C-SCA methods is that the new method does not impose that the clusters are mutually exclusive, but allows for
overlapping clusters. Therefore, the new method is called Overlapping Clusterwise Simultaneous Component
Analysis (OC-SCA). Each of these clusters corresponds to a single component, such that all the data blocks that
are assigned to a particular cluster have the associated component in common. Moreover, the more clusters a
specific data block belongs to, the more complex the underlying component structure. A simulation study and
an empirical application to emotion data are included in the paper.
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1. Introduction

Multivariate multiblock data are a set of matrices that have either
the variable (column) mode in common, whereas the entities of the
observation mode differ [1], or that have the observation (row) mode in
common, whereas the variables differ. Examples of columnwise-
coupled multiblock data can be found in several domains of research. In
psychology, one may think of multiple emotion ratings of subjects from
different age groups, or inhabitants of different countries (e.g., [2,3]). In
chemometrics, multiblock data may contain concentrations of chemical
compounds in certain substances in different geographical areas, or mea-
sured with different measurement techniques, or from different rawma-
terial sources, etcetera (e.g., [4,5,6]). In economics, one can think of a
questionnaire on work experience administered to workers belonging
to different industries or countries (e.g., [7]). In marketing, an example
is a survey on the liking of a food item administered to consumers of dif-
ferent countries (e.g., [8]). Examples of rowwise coupled multiblock data
include multisource data in chemometrics (e.g., [9]). For the current

paper, we will focus on columnwise coupled multiblock data. Adapting
themethod presented in this paper for rowwise coupled data is a possible
direction for future research.

In all of the above cases, it can be useful to synthesize the available
information in terms of components and to inspect similarities and
differences in the component structures of the data blocks – which we
will refer to as the ‘within-block structures’. For this purpose, the
clusterwise simultaneous component analysis (C-SCA) framework was
developed in a series of papers by De Roover and colleagues [1,10].
C-SCA builds on the assumption that, based on their within-block struc-
ture, the data blocks can be partitioned into a few mutually exclusive
clusters. The cluster-specific component structures are revealed by
applying simultaneous component analysis (SCA) [11,12] to the data
blocks that are assigned to the same cluster. C-SCA encompasses SCA
and standard principal component analyses (PCA) [13,14] on the sepa-
rate data blocks as special cases. The former is obtained when the num-
ber of clusters amounts to one, the latter when the number of clusters
equals the number of blocks.

Several C-SCA variants have been proposed in the literature. One
model feature that is varied is which particular SCA variant is used
(SCA-ECP [1,10], SCA-IND [15], or SCA-P [16]), and thus, which restric-
tions are imposed on the block-specific component variances and correla-
tions.Moreover, variants differ inwhether or not the number of extracted
components is restricted to be the same across clusters [17]. Finally, a
variant has been proposed that allows some of the extracted components
to be shared by all clusters (i.e., common components) and thus distin-
guishes between common and cluster-specific components [18].
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In this paper we will develop a more general version of C-SCA. The
key principle of the newmethod is to seek for overlapping clusters, im-
plying that a data block can be assigned tomore than one cluster. There-
fore, the method is called Overlapping Clusterwise Simultaneous
Component Analysis (OC-SCA-IND; the reasons why we apply the
SCA-IND restrictions will be elucidated in Section 2). Allowing for over-
lapping clusters may be helpful in many domains of research. For
instance, in a cross-cultural data set, it is reasonable to think that, on
the one hand, countries with the same language share a component
and, on the other hand, countries with the same religion share another
component, whereas countries will partially overlap in terms of religion
and language.

Reconsidering the modeling features of the different C-SCA variants,
OC-SCA encompasses several C-SCA variants as special cases. Regarding
modeling between-block differences in the number of components, in
OC-SCA-IND each cluster corresponds to one component. Consequently,
the number of clusters towhich a data block belongs gives an indication
of the complexity of its underlying component structure. With respect
to the common versus cluster-specific nature of components, the
number of data blocks that is assigned to a certain cluster reflects how
common or specific the corresponding component is, allowing to
model different degrees of commonness and specificity.

The paper is organized as follows. In Section 2, SCA-IND and C-SCA-
IND are recapitulated. Section 3 is devoted to the new OC-SCA-IND
model. The estimation procedure and how to select the optimal number
of clusters (which equals the number of components) are discussed in
Section 4. Sections 5 and 6 report a simulation study for evaluating the
performance of OC-SCA-IND and the results of a real-life application, re-
spectively. In both cases a comparison to the SCA-IND results is included.
Finally, Section 7 contains some conclusions and points of discussion.

2. (Clusterwise) simultaneous component analysis models

2.1. Data structure and preprocessing

Columnwise coupled multiblock data consist of I data blocks Xi

(Ni× J), i=1,…, I, containing the scores of Ni observations on J quantita-
tive variables.We can vertically concatenate the data blocksXi, i=1,…, I,

leading to the data matrix X (N × J), where N ¼ ∑
I

i¼1
Ni denotes the total

number of observations.
Prior to fitting the model to the data, these are usually preprocessed.

Specifically, the data are first centered per data block to remove
between-block differences in variable means, allowing us to focus on
between-block differences in covariance structure. By scaling the data
we subsequently eliminate artificial scale differences between variables.
In SCA and C-SCA analysis, two scaling options are frequently used,
namely autoscaling [19] and overall scaling [12]. In the former case
every variable is normalized per data block (i.e., dividing the centered
data by the block-specific standard deviations), whereas in the latter
case the variables are normalized across all data blocks (i.e., dividing
by the overall standard deviations). Therefore, autoscaling should be
preferredwhenonewants to focus on thewithin-block correlation struc-
ture, while overall scaling is recommended to inspect the within-block
covariance structure. Since the IND version of SCAwill be used, which al-
lows for between-block differences in the variances of the components,
overall scaling appears to be the most natural choice in this paper.

2.2. SCA-IND

An SCA model is formulated as

Xi ¼ FiB
0 þ Ei; i ¼ 1; :::; I; ð1Þ

where Fi (Ni × Q) and B ( J × Q) are the component score matrix of data
block i and the component loading matrix, respectively, where Q

denotes the number of components, and Ei (Ni × J) is the error matrix
of data block i. As stated in the introduction, several variants have
been proposed (i.e., SCA-ECP, SCA-IND, SCA-PF2, and SCA-P), that im-
pose different restrictions on the variances and correlations of the
block-specific component score matrices (for more details, see [12]).
Generally speaking, the more restrictions are imposed, the less
between-block differences are allowed for. Therefore, none of the vari-
ants is uniformly the best choice.Which variant is selected thus strongly
depends on the data set under investigation. In this paper, we focus on
SCA-IND (i.e., SCAwith INDscal constraints), inwhich the block-specific
component scores are uncorrelated. The variances of the component
scores may differ across the blocks, but equal one across all blocks.
Unlike SCA-ECP and SCA-P, SCA-IND has no rotational freedom (under
mild assumptions), which makes interpretation simpler.

2.3. C-SCA-IND and other C-SCA variants

C-SCA models cluster the data blocks into K mutually exclusive
groups and formulate a separate SCA model within each cluster. C-SCA
[1,10] was originally formulated as follows:

Xi ¼
XK
k¼1

pikF
kð Þ
i B kð Þ0 þ Ei; i ¼ 1; :::; I; ð2Þ

where Fi
(k) is the component score matrix of data block iwhen assigned

to cluster k, and B(k) is the component loading matrix of cluster k. The
matrices Fi

(k) and B(k) have order (Ni × Q) and (J × Q), respectively,
where Q denotes the number of cluster-specific components. Finally,
the entries pik of the partition matrix P take values 1 (if data block i is

assigned to cluster k) or 0 (otherwise). Moreover, it holds that∑
K

k¼1
pik ¼

1; i ¼ 1;…; I. Hence, if K = 1, then P = 1 (where 1 denotes a column
vector of 1's) and C-SCA reduces to SCA.

Although C-SCA-ECP [1,10] and C-SCA-P versions [16] have been
proposed aswell, we focus here on the C-SCA-IND variant [15]. This var-
iant has no rotational freedom and, unlike C-SCA-P, forces all important
between-block differences in the correlations of the variables to show
up in the clustering. Moreover, the often too restrictive C-SCA-ECP as-
sumption of equal component variances — implying that each compo-
nent gets an equal weight in the solution for each data block — is
avoided.

Regarding between-block differences in the complexity of the
component structure, C-SCA models generally restrict the number of
components to be the same across clusters. Since this assumption is
often unrealistic, De Roover et al. [17] proposed a variant that allows
for different numbers of cluster-specific components Q(k).

Finally, since all components are cluster-specific, it can be concluded
that C-SCAmodels strongly focus on structural differences. However, in
many cases, it is reasonable to expect that next to these differences,
there will also be a lot of structural similarity. To better capture both
aspects — similarities and differences — a C-SCA variant was proposed
that allows for common components, shared by all clusters, as well as
cluster-specific ones [18]. This model is formulated as follows:

Xi ¼ Fi;commBcomm
0 þ

XK
k¼1

pikF
kð Þ
i;specB

kð Þ
spec

0 þ Ei; i ¼ 1; :::; I; ð3Þ

where the subscripts ‘comm’ and ‘spec’ indicate ‘common’ and ‘cluster-
specific’, respectively. Fi,comm (Fi

(k)

,spec) and Bcomm (Bspec) are the common
(cluster-specific) component score matrix for data block i and common
(cluster-specific) component loading matrix, respectively. One draw-
back of CC-SCA is that the number of common components and
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