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In order to ensure operation safety and consistent product quality, multivariate statistical methods have been
widely adopted in chemical batch process monitoring. In this paper, a semi-supervised mixture discriminant
monitoring (SMDM) scheme is proposed, which integrates the strengths of both supervised and unsupervised
techniques. The semi-supervised characteristic enables SMDM to fully make use of both labeled and unlabeled
data, leading to more reliable process models. In addition, SMDM is suited to handling non-Gaussian distributed
data that are commonly observed in batch processes. Inheriting from supervised learning, SMDM has better on-
line fault diagnosis capability of known faults compared to the unsupervised multivariate statistical process
monitoring methods. Meanwhile, the utilization of control charts makes SMDM capable to detect unknown
faults. After an unknown fault is detected, the process variables most contributing to the fault can be identified
through missing variable analysis. Such information is valuable for process engineers to find out the root cause
of the fault. The collected data of the new faults are then used to update the monitoring model. By doing so,
the fault diagnosis performance of themonitoringmodel can be improved online. The proposedmethod is dem-
onstrated through its application to an injection molding process.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In chemical industrial applications, batch processing is of great impor-
tance due to its flexibility in manufacturing low-volume, high-value
added products. In order to ensure operation safety as well as consistent
and high product quality, historical data based batch process monitoring
has attracted much research interest [1,2]. According to Chiang et al. [3],
the entire procedure of process monitoring consists of fault detection,
fault identification, fault diagnosis, and process recovery. In Chiang
et al.'s definition that will be followed in this paper, fault detection is for
the recognition of process abnormality, while the purpose of fault identi-
fication is to find out the variables contributing mostly to the detected
process faults. Different from fault identification, fault diagnosis aims to
determine the root causes of the abnormal behaviors.With such informa-
tion, it is possible to conduct process recovery. Unsupervised techniques,
such as principal component analysis (PCA), independent component
analysis (ICA), and Gaussian mixture model (GMM), are frequently used
in fault detection and identification [4]; while supervised techniques,
such as Fisher discriminant analysis (FDA), artificial neural network
(ANN), and support vector machine (SVM), are commonly adopted for
fault diagnosis via classification, after a fault is detected [3].

Various multivariate statistical process monitoring (MSPM) ap-
proaches have been applied to batch processes, some of themost typical

of which are the following. The well-known multiway principal compo-
nent analysis (MPCA)methodwas proposed byNomikos andMacGregor
[5,6] in 1994, tracking the progress of batch runs by projecting variable
trajectory information to lower dimensional latent variable spaces.
Multiway partial least squares (MPLS) [7] conducts batch process moni-
toring in a similar way as MPCA does, which considers product quality
during process modeling. To track the time-varying characteristic of var-
iable trajectories in batch operations, Rännar et al. developed the adap-
tive hierarchical PCA (AHPCA) method [8]. Chen and Liu [9], Lu et al.
[10] as well as Yao and Gao [11] integrated PCA with time-series model
structures to better present batch process dynamics. For improving the
analysis of processes, multiblock PCA/PLS [12,13] were also utilized in
batch process modeling and monitoring. In recent years, pioneered by
Lu and Gao [14], many researchers showed interest in the phase-based
modeling and fault detection of batch processes [15]. Besides these linear
PCA/PLS-basedmethods, nonlinear techniques have also been applied to
batch processes, e.g. themultiway kernel PCA [16]. To copewith the non-
Gaussian data distribution caused by various process conditions or oper-
ation phases, ICA has also been utilized in batch process monitoring [17,
18]. GMM handles the non-Gaussianity contained in batch process data
in another way [19–21], which approximates the distribution of normal
operating data with a mixture of Gaussians.

All the previously mentioned methods require a fault-free training
data set of normal operation for model building, and belong to the class
of unsupervised monitoring techniques. Therefore, they mainly aim at
fault detection, and can also provide fault identification information
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with the help of contribution plots [22] or fault reconstruction algo-
rithms [23]. However, the root causes of the faults are not discovered by
these methods. In real industry, the process data always contain a certain
number of faulty samples due to various types of sensor faults andprocess
abnormalities. Hence, it is natural to think about extending the utilization
of supervised techniques to online process monitoring for both fault de-
tection anddiagnosis. In continuous process applications, FDA, an efficient
tool for fault classification, has been considered as analternative for online
monitoring [24]. A limitation of the conventional FDA algorithm is that it
relies on the assumption of within-class Gaussianity. To handle the
multimodality within each normal or faulty class, Yu [25] adopted the lo-
calized Fisher discriminant analysis (LFDA) approach. In the field of batch
process monitoring, Zhang et al. [26] utilized kernel Fisher discriminant
analysis (KFDA) to detect and diagnose the faults occurring in a nonlinear
process, while Yu [27] extended the kernelized LFDA to batch process ap-
plications and named his method multiway kernel LFDA (MLKFDA).

Despite their advantages, the conventional supervised monitoring
techniques have two major shortcomings. First, most of these methods
rely on data classification. As a result, they are not capable of dealing
with unknown faults not contained in the training data set, although
such faults are often observed in industrial processes. In addition, as
discussed in [28], even for known faults, monitoring solely based on
classification results may lead to detection delay. It is effective to inte-
grate control charts with supervised monitoring techniques. Second,
the performance of supervised learning tends to be degraded when a
part of historical samples are unlabeled. In processmonitoring, such sit-
uation is common, which occurs if the status of parts of the historical
measurements is unclear. In such cases, the supervised techniques
often lead to models over-fitted to the labeled samples. As a result, the
monitoring performance may seriously deteriorate. Most recently, an
MDA-based monitoring approach [28] has been proposed to overcome
the first shortcoming. However, the second problem still exists.

To solve the above problems, this paper proposes a semi-supervised
mixture discriminantmonitoring (SMDM)approach for batchprocess ap-
plications. First, themixture discriminant analysis (MDA) [29,30]model is
extended from supervised learning to semi-supervised learning. Inherited
fromMDA, the developed semi-supervisedmixture discriminant analysis
(SMDA) approach is able to deal with non-Gaussian distributed data. In
the meantime, benefiting from semi-supervised learning, SMDA outper-
forms MDA when parts of the data are unlabeled. Then, a batch process
monitoring scheme, i.e. SMDM, is proposed by combining the statistical
process control (SPC) charting technique and the SMDA model. Such a
combination enables the proposed SMDM method to efficiently detect
both known and unknown faults. For known faults, root-cause diagnosis
results can be achieved automatically through fault classification, while
for unknown faults in which the exact type information is unavailable,
the identification of the most contributing variables is carried on using
missing data analysis. In addition, the newly collected data are then uti-
lized to update the monitoring model, which makes it possible to contin-
uously improve the fault diagnosis ability.

The rest of the paper is organized as follows. In Section 2, the conven-
tional MDA approach for data classification is reviewed, followed by the
development of the SMDAmodel in Section 3. Then, the entire procedure
of SMDM is described in Section 4, including the SMDA based process
modeling, the development of control chart, the steps of online fault de-
tection, the root-cause diagnosis of known faults, the identification of un-
known faults, aswell as themodel update. In Section 5, the application to
an injection molding process verifies the capability of the proposed ap-
proach. Finally, the conclusions are drawn in Section 6.

2. Mixture discriminant analysis

MDAwas firstly proposed by Hastie and Tibshirani [29] for handling
within-class non-Gaussianity in discriminant analysis, in which the
class densities are modeled as mixtures of Gaussians. In the original
work, different classes are assumed to have a common covariance

matrix. Later, Fraley and Raftery [30] relaxed such assumption and
allowed the utilization of different class covariance matrices in MDA.
The details of the MDA approach are as follows.

Without losing generality, assume that the training data set X ¼
x1 x2 ⋯ xn½ �T has the dimensions of n × m, where m is the num-
ber of variables and n is the number of samples. All the training sample
vectors xi (i = 1, 2, …, n) are known to belong to a class j, where j = 1,
2, …, J. Divide each class j into Rj artificial subclasses, denoted by cjr, r =

1,…, Rj, and define R ¼ ∑
J

j¼1
Rj: Each subclass has a multivariate Gaussian

distribution with a mean vector μjr and a covariance matrix Σjr. The
prior probability for class j is denoted byΠj, while the mixing probability
for the rth subclass within class j is presented by the parameter πjr.

∑R j

r¼1 πjr ¼ 1: Usually, the Πj are known or easily estimated from the
training data, and the πjr are unknown.

The mixture density for class j is:

mj xð Þ ¼ p xj jð Þ

¼
X R j

r¼1

πjr 2πð Þ−m=2 Σjr

���
���−1=2

expð−
x−μjr

� �T
Σ jr−1 x−μjr

� �
2 Þ:ð1Þ

The parameters, μjr, Σjr and πjr, can be estimated by maximizing the
log-likelihood function:

lmix θð Þ ¼
Xn
i¼1

logp xijθð Þ; ð2Þ

where the parameter θ = {πjr, μjr, Σjr; r = 1, 2, ⋯, Rj, j = 1, 2, ⋯, J}.
The iterative expectation–maximization (EM) algorithm provides a

convenient method for maximizing lmix(θ). Provided that x is a training
sample in class j, the estimated probability of x belonging to the rth sub-
class of class j is expressed as:

p cjr
��x; j� �

¼

πjr 2πð Þ−m=2 Σjr

���
���−1=2

exp −
x−μjr

� �T
Σjr

−1 x−μjr

� �
2

0
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1
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XR j
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πjk 2πð Þ−m=2 Σjk

���
���−1=2
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x−μjk
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ð3Þ

The above equation is known as the expectation step (E-step),
followed by the maximization step (M-step) as:

πjr ¼
∑

xi∈class j
pðcjr��xi; jÞ

∑
R j

k¼1
∑

xi∈class j
pðcjk��xi; jÞ

ð4Þ

μjr ¼
X

xi∈class j

xip cjr
��xi; j

� �
=

X
xi∈class j

p cjr xi; jj Þ;
�

ð5Þ

Σjr ¼

X
xi∈class j

p cjr
��xi; j

� �
xi−μjr

� �
xi−μjr

� �T

X
xi∈class j

p cjr
��xi; j

� � : ð6Þ

The above two steps are repeated iteratively until convergence.
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